scholarly journals Associations of Environmental Conditions and Vibrio parahaemolyticus Genetic Markers in Washington State Pacific Oysters

2019 ◽  
Vol 10 ◽  
Author(s):  
Aspen Flynn ◽  
Benjamin J. K. Davis ◽  
Erika Atherly ◽  
Gina Olson ◽  
John C. Bowers ◽  
...  
2022 ◽  
Author(s):  
Brendan Fries ◽  
Benjamin J. K. Davis ◽  
Anne E. Corrigan ◽  
Angelo DePaola ◽  
Frank C. Curriero

The Pacific Northwest (PNW) is one of the largest commercial harvesting areas for Pacific oysters (Crassostrea gigas) in the United States. Vibrio parahaemolyticus, a bacterium naturally present in estuarine waters, accumulates in shellfish and is a major cause of seafood-borne illness. Growers, consumers, and public-health officials have raised concerns about rising vibriosis cases in the region. V. parahaemolyticus genetic markers (tlh, tdh, trh) were estimated using an MPN-PCR technique in Washington State Pacific oysters regularly sampled between May and October from 2005 to 2019 (N=2,836); environmental conditions were also measured at each sampling event. Multilevel mixed-effects regression models were used to assess relationships between environmental measures and genetic markers as well as genetic marker ratios (trh:tlh, tdh:tlh, and tdh:trh), accounting for variation across space and time. Spatial and temporal dependence were also accounted for in the model structure. Model fit improved when including environmental measures from previous weeks (1-week lag for air temperature, 3-week lag for salinity). Positive associations were found between tlh and surface water temperature, specifically between 15°C and 26°C, and between trh and surface water temperature up to 26°C. tlh and trh were negatively associated with 3-week lagged salinity in the most saline waters (> 27 ppt). There was also a positive relationship between tissue temperature and tdh, but only above 20°C. The tdh:tlh ratio displayed analogous inverted non-linear relationships as tlh. The non-linear associations found between the genetic targets and environmental measures demonstrate the complex habitat suitability of V. parahaemolyticus. Additional associations with both spatial and temporal variables also suggest there are influential unmeasured environmental conditions that could further explain bacterium variability. Overall, these findings confirm previous ecological risk factors for vibriosis in Washington State, while also identifying new associations between lagged temporal effects and pathogenic markers of V. parahaemolyticus.


2009 ◽  
Vol 72 (1) ◽  
pp. 174-177 ◽  
Author(s):  
CHENGCHU LIU ◽  
JIANZHANG LU ◽  
YI-CHENG SU

This study investigated the effects of flash freezing, followed by frozen storage, on reducing Vibrio parahaemolyticus in Pacific raw oysters. Raw Pacific oysters were inoculated with a five-strain cocktail of V. parahaemolyticus at a total level of approximately 3.5 × 105 most probable number (MPN) per gram. Inoculated oysters were subjected to an ultralow flash-freezing process (−95.5°C for 12 min) and stored at −10, −20, and −30°C for 6 months. Populations of V. parahaemolyticus in the oysters declined slightly by 0.22 log MPN/g after the freezing process. Subsequent storage of frozen oysters at −10, −20, and −30°C resulted in considerable reductions of V. parahaemolyticus in the oysters. Storing oysters at −10°C was more effective in inactivating V. parahaemolyticus than was storage at −20 or −30°C. Populations of V. parahaemolyticus in the oysters declined by 2.45, 1.71, and 1.45 log MPN/g after 1 month of storage at −10, −20, and −30°C, respectively, and continued to decline during the storage. The levels of V. parahaemolyticus in oysters were reduced by 4.55, 4.13, and 2.53 log MPN/g after 6 months of storage at −10, −20, and −30°C, respectively. Three process validations, each separated by 1 week and conducted according to the National Shellfish Sanitation Program's postharvest processing validation–verification interim guidance for Vibrio vulnificus and Vibrio parahaemolyticus, confirmed that a process of flash freezing, followed by storage at −21 ± 2°C for 5 months, was capable of achieving greater than 3.52-log (MPN/g) reductions of V. parahaemolyticus in half-shell Pacific oysters.


2006 ◽  
Vol 69 (5) ◽  
pp. 1040-1045 ◽  
Author(s):  
CHIA-HSIN JU ◽  
P. S. MARIE YEUNG ◽  
JESSICA OESTERLING ◽  
DANIEL A. SEIGERMAN ◽  
KATHRYN J. BOOR

Since 1996, Vibrio parahaemolyticus serotype O3:K6 and closely related strains have been associated with an increased incidence of V. parahaemolyticus gastroenteritis worldwide, suggesting the emergence of strains with enhanced abilities to cause disease. One hypothesis for the recent emergence of V. parahaemolyticus O3:K6 and related strains is an enhanced capacity for environmental survival relative to other strains, which might result in increased human exposure to these organisms. Therefore, the objective of this study was to test the hypothesis that survival or growth characteristics of clinical V. parahaemolyticus isolates differ from those of nonclinical isolates under different environmental conditions. Twenty-six V. parahaemolyticus isolates selected to represent either clinical or food sources were monitored for either survival following exposure to high magnesium (300 mM) or growth under iron-limited conditions. Isolates in each category (clinical or food) differed widely in survival capabilities following 24 h of exposure to 300 mM Mg2+. Although 4 of 15 clinical isolates grew better at approximately 0.96 μM Fe2+ (iron-limited conditions) than at 50 μM Fe2+ (iron-rich conditions), as an entire group clinical isolates in this study were not more effective at growing under iron-limited conditions than were strains not associated with disease. Within the diverse collection of strains examined in these experiments, neither growth characteristics in low-iron environments nor survival capabilities following exposure to high magnesium concentrations were uniformly different between clinical and nonclinical V. parahaemolyticus isolates. Therefore, neither phenotypic characteristic can be used to reliably differentiate potentially pathogenic V. parahaemolyticus strains.


2013 ◽  
Vol 79 (10) ◽  
pp. 3303-3305 ◽  
Author(s):  
Alisha M. Aagesen ◽  
Sureerat Phuvasate ◽  
Yi-Cheng Su ◽  
Claudia C. Häse

ABSTRACTVibrio parahaemolyticuscan resist oyster depuration, suggesting that it possesses specific factors for persistence. We show that type I pili, type IV pili, and both flagellar systems contribute toV. parahaemolyticuspersistence in Pacific oysters whereas type III secretion systems and phase variation do not.


Sign in / Sign up

Export Citation Format

Share Document