scholarly journals Quantification of Human Oral and Fecal Streptococcus parasanguinis by Use of Quantitative Real-Time PCR Targeting the groEL Gene

2019 ◽  
Vol 10 ◽  
Author(s):  
Qiurong Chen ◽  
Guojun Wu ◽  
Hui Chen ◽  
Hui Li ◽  
Shuo Li ◽  
...  
2007 ◽  
Vol 73 (19) ◽  
pp. 6321-6325 ◽  
Author(s):  
Camilla Bernasconi ◽  
Giorgio Volponi ◽  
Claudia Picozzi ◽  
Roberto Foschino

ABSTRACT A quantitative real-time PCR targeting the tnaA gene was studied to detect Escherichia coli and distinguish E. coli from Shigella spp. These microorganisms revealed high similarity in the molecular organization of the tna operon.


2018 ◽  
Vol 115 ◽  
pp. 312-320 ◽  
Author(s):  
Shuai Wei ◽  
Ramachandran Chelliah ◽  
Byung-Jae Park ◽  
Joong-Hyun Park ◽  
Fereidoun Forghani ◽  
...  

2013 ◽  
Vol 59 (3) ◽  
pp. 204-209 ◽  
Author(s):  
Qingyun Peng ◽  
Xin Zhong ◽  
Wei Lei ◽  
Guren Zhang ◽  
Xin Liu

Ophiocordyceps sinensis, one of the best known entomopathogenic fungi in traditional Chinese medicine, parasitizes larvae of the moth genus Thitarodes, which lives in soil tunnels. However, little is known about the spatial distribution of O. sinensis in the soil. We established a protocol for DNA extraction, purification, and quantification of O. sinensis in soil with quantitative real-time PCR targeting the internal transcribed spacer region. The method was assessed using 34 soil samples from Tibet. No inhibitory effects in purified soil DNA extracts were detected. The standard curve method for absolute DNA quantification generated crossing point values that were strongly and linearly correlated to the log10of the initial amount of O. sinensis genomic DNA (r2= 0.999) over 7 orders of magnitude (4 × 101to 4 × 107fg). The amplification efficiency and y-intercept value of the standard curve were 1.953 and 37.70, respectively. The amount of O. sinensis genomic DNA decreased with increasing soil depth and horizontal distance from a sclerotium (P < 0.05). Our protocol is rapid, specific, sensitive, and provides a powerful tool for quantification of O. sinensis from soil.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yi Wang ◽  
Hongjuan Liao ◽  
Yueheng Wang ◽  
Jinlin Zhou ◽  
Feng Wang ◽  
...  

Abstract Background Cardiovascular diseases have become the leading cause of death worldwide, and cardiac hypertrophy is the core mechanism underlying cardiac defect and heart failure. However, the underlying mechanisms of cardiac hypertrophy are not fully understood. Here we investigated the roles of Kallikrein 11 (KLK11) in cardiac hypertrophy. Methods Human and mouse hypertrophic heart tissues were used to determine the expression of KLK11 with quantitative real-time PCR and western blot. Mouse cardiac hypertrophy was induced by transverse aortic constriction (TAC), and cardiomyocyte hypertrophy was induced by angiotensin II. Cardiac function was analyzed by echocardiography. The signaling pathway was analyzed by western blot. Protein synthesis was monitored by the incorporation of [3H]-leucine. Gene expression was analyzed by quantitative real-time PCR. Results The mRNA and protein levels of KLK11 were upregulated in human hypertrophic hearts. We also induced cardiac hypertrophy in mice and observed the upregulation of KLK11 in hypertrophic hearts. Our in vitro experiments demonstrated that KLK11 overexpression promoted whereas KLK11 knockdown repressed cardiomyocytes hypertrophy induced by angiotensin II, as evidenced by cardiomyocyte size and the expression of hypertrophy-related fetal genes. Besides, we knocked down KLK11 expression in mouse hearts with adeno-associated virus 9. Knockdown of KLK11 in mouse hearts inhibited TAC-induced decline in fraction shortening and ejection fraction, reduced the increase in heart weight, cardiomyocyte size, and expression of hypertrophic fetal genes. We also observed that KLK11 promoted protein synthesis, the key feature of cardiomyocyte hypertrophy, by regulating the pivotal machines S6K1 and 4EBP1. Mechanism study demonstrated that KLK11 promoted the activation of AKT-mTOR signaling to promote S6K1 and 4EBP1 pathway and protein synthesis. Repression of mTOR with rapamycin blocked the effects of KLK11 on S6K1 and 4EBP1 as well as protein synthesis. Besides, rapamycin treatment blocked the roles of KLK11 in the regulation of cardiomyocyte hypertrophy. Conclusions Our findings demonstrated that KLK11 promoted cardiomyocyte hypertrophy by activating AKT-mTOR signaling to promote protein synthesis.


2008 ◽  
Vol 375 (1) ◽  
pp. 150-152 ◽  
Author(s):  
Cheng Xin Yi ◽  
Jun Zhang ◽  
Ka Man Chan ◽  
Xiao Kun Liu ◽  
Yan Hong

Sign in / Sign up

Export Citation Format

Share Document