scholarly journals Single-Cell Analysis of Foot-and-Mouth Disease Virus

2020 ◽  
Vol 11 ◽  
Author(s):  
Hailong Wang ◽  
Xiu Xin ◽  
Congyi Zheng ◽  
Chao Shen
2018 ◽  
Vol 92 (9) ◽  
pp. e00179-18 ◽  
Author(s):  
Xiu Xin ◽  
Hailong Wang ◽  
Lingling Han ◽  
Mingzhen Wang ◽  
Hui Fang ◽  
...  

ABSTRACTViral infection and replication are affected by host cell heterogeneity, but the mechanisms underlying the effects remain unclear. Using single-cell analysis, we investigated the effects of host cell heterogeneity, including cell size, inclusion, and cell cycle, on foot-and-mouth disease virus (FMDV) infection (acute and persistent infections) and replication. We detected various viral genome replication levels in FMDV-infected cells. Large cells and cells with a high number of inclusions generated more viral RNA copies and viral protein and a higher proportion of infectious cells than other cells. Additionally, we found that the viral titer was 10- to 100-fold higher in cells in G2/M than those in other cell cycle phases and identified a strong correlation between cell size, inclusion, and cell cycle heterogeneity, which all affected the infection and replication of FMDV. Furthermore, we demonstrated that host cell heterogeneity influenced the adsorption of FMDV due to differences in the levels of FMDV integrin receptors expression. Collectively, these results further our understanding of the evolution of a virus in a single host cell.IMPORTANCEIt is important to understand how host cell heterogeneity affects viral infection and replication. Using single-cell analysis, we found that viral genome replication levels exhibited dramatic variability in foot-and-mouth disease virus (FMDV)-infected cells. We also found a strong correlation between heterogeneity in cell size, inclusion number, and cell cycle status and that all of these characteristics affect the infection and replication of FMDV. Moreover, we found that host cell heterogeneity influenced the viral adsorption as differences in the levels of FMDV integrin receptors' expression. This study provided new ideas for the studies of correlation between FMDV infection mechanisms and host cells.


Author(s):  
S. S. Breese ◽  
H. L. Bachrach

Models for the structure of foot-and-mouth disease virus (FMDV) have been proposed from chemical and physical measurements (Brown, et al., 1970; Talbot and Brown, 1972; Strohmaier and Adam, 1976) and from rotational image-enhancement electron microscopy (Breese, et al., 1965). In this report we examine the surface structure of FMDV particles by high resolution electron microscopy and compare it with that of particles in which the outermost capsid protein VP3 (ca. 30, 000 daltons) has been split into smaller segments, two of which VP3a and VP3b have molecular weights of about 15, 000 daltons (Bachrach, et al., 1975).Highly purified and concentrated type A12, strain 119 FMDV (5 mg/ml) was prepared as previously described (Bachrach, et al., 1964) and stored at 4°C in 0. 2 M KC1-0. 5 M potassium phosphate buffer at pH 7. 5. For electron microscopy, 1. 0 ml samples of purified virus and trypsin-treated virus were dialyzed at 4°C against 0. 2 M NH4OAC at pH 7. 3, deposited onto carbonized formvar-coated copper screens and stained with phosphotungstic acid, pH 7. 3.


Sign in / Sign up

Export Citation Format

Share Document