Single-cell analysis reveals the relevance of foot-and-mouth disease virus persistence to emopamil-binding protein gene expression in host cells

2017 ◽  
Vol 162 (12) ◽  
pp. 3791-3802 ◽  
Author(s):  
Hui Fang ◽  
Bing Yuan ◽  
Lingling Han ◽  
Xiu Xin ◽  
Hailong Wang ◽  
...  
2018 ◽  
Vol 92 (9) ◽  
pp. e00179-18 ◽  
Author(s):  
Xiu Xin ◽  
Hailong Wang ◽  
Lingling Han ◽  
Mingzhen Wang ◽  
Hui Fang ◽  
...  

ABSTRACTViral infection and replication are affected by host cell heterogeneity, but the mechanisms underlying the effects remain unclear. Using single-cell analysis, we investigated the effects of host cell heterogeneity, including cell size, inclusion, and cell cycle, on foot-and-mouth disease virus (FMDV) infection (acute and persistent infections) and replication. We detected various viral genome replication levels in FMDV-infected cells. Large cells and cells with a high number of inclusions generated more viral RNA copies and viral protein and a higher proportion of infectious cells than other cells. Additionally, we found that the viral titer was 10- to 100-fold higher in cells in G2/M than those in other cell cycle phases and identified a strong correlation between cell size, inclusion, and cell cycle heterogeneity, which all affected the infection and replication of FMDV. Furthermore, we demonstrated that host cell heterogeneity influenced the adsorption of FMDV due to differences in the levels of FMDV integrin receptors expression. Collectively, these results further our understanding of the evolution of a virus in a single host cell.IMPORTANCEIt is important to understand how host cell heterogeneity affects viral infection and replication. Using single-cell analysis, we found that viral genome replication levels exhibited dramatic variability in foot-and-mouth disease virus (FMDV)-infected cells. We also found a strong correlation between heterogeneity in cell size, inclusion number, and cell cycle status and that all of these characteristics affect the infection and replication of FMDV. Moreover, we found that host cell heterogeneity influenced the viral adsorption as differences in the levels of FMDV integrin receptors' expression. This study provided new ideas for the studies of correlation between FMDV infection mechanisms and host cells.


1999 ◽  
Vol 73 (12) ◽  
pp. 9891-9898 ◽  
Author(s):  
Jarasvech Chinsangaram ◽  
Maria E. Piccone ◽  
Marvin J. Grubman

ABSTRACT A genetic variant of foot-and-mouth disease virus lacking the leader proteinase coding region (A12-LLV2) is attenuated in both cattle and swine and, in contrast to wild-type virus (A12-IC), does not spread from the initial site of infection after aerosol exposure of bovines. We have identified secondary cells from susceptible animals, i.e., bovine, ovine, and porcine animals, in which infection with A12-LLV2, in contrast to A12-IC infection, does not produce plaques; this result indicates that this virus cannot spread from the site of initial infection to neighboring cells. Nevertheless, A12-LLV2 can infect these cells, but cytopathic effects and virus yields are significantly reduced compared to those seen with A12-IC infection. Reverse transcription-PCR analysis demonstrates that both A12-LLV2 and A12-IC induce the production of alpha/beta interferon (IFN-α/β) mRNA in host cells. However, only supernatants from A12-LLV2-infected cells have significant antiviral activity. The antiviral activity in supernatants from A12-LLV2-infected embryonic bovine kidney cells is IFN-α/β specific, as assayed with mouse embryonic fibroblast cells with or without IFN-α/β receptors. The results obtained with cell cultures demonstrate that the ability of A12-IC to form plaques is associated with the suppression of IFN-α/β expression and suggest a role for this host factor in the inability of A12-LLV2 to spread and cause disease in susceptible animals.


Development ◽  
2019 ◽  
Vol 146 (12) ◽  
pp. dev178673 ◽  
Author(s):  
Alexander N. Combes ◽  
Belinda Phipson ◽  
Kynan T. Lawlor ◽  
Aude Dorison ◽  
Ralph Patrick ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Huisheng Liu ◽  
Qiao Xue ◽  
Qiaoying Zeng ◽  
Zixiang Zhu ◽  
Haixue Zheng

Foot-and-mouth disease virus (FMDV) is the etiological agent of FMD, which affects domestic and wild cloven-hoofed animals. The structural protein VP1 plays an important role in FMDV pathogenesis. However, the interacting partners of VP1 in host cells and the effects of these interactions in FMDV replication remain incompletely elucidated. Here, we identified a porcine cell protein, serine/threonine kinase 3 (STK3), which interacts with FMDV VP1 using the yeast two-hybrid system. The VP1-STK3 interaction was further confirmed by coimmunoprecipitation experiments in human embryonic kidney 293T and porcine kidney 15 (PK-15) cells. The carboxyl-terminal region (amino acids 180–214) of VP1 was essential for its interaction with STK3. The effects of overexpression and underexpressing of STK3 in PK-15 cells were assessed, and the results indicated that STK3 significantly inhibited FMDV replication. Our data expand the role of STK3 during viral infection, provide new information regarding the host cell kinases that are involved in viral replication, and identify potential targets for future antiviral strategies.


1996 ◽  
Vol 13 (3) ◽  
pp. 199-211 ◽  
Author(s):  
Diane K. O’Dowd ◽  
Martin A. Smith

2017 ◽  
Vol 9 (11) ◽  
pp. 857-867 ◽  
Author(s):  
Sultan Doğanay ◽  
Maurice Youzong Lee ◽  
Alina Baum ◽  
Jessie Peh ◽  
Sun-Young Hwang ◽  
...  

Early expression ofRIG-IandMDA5in a subset of infected cells may contribute to the decision making process for turning on theIFNB1expression.


2021 ◽  
Vol 2021 ◽  
pp. 1-35
Author(s):  
Weiwei Lin ◽  
Yangxin Wang ◽  
Yisheng Chen ◽  
Qiangwei Wang ◽  
Zhaowen Gu ◽  
...  

Background. This study is aimed at investigating the changes in relevant pathways and the differential expression of related gene expression after ischemic stroke (IS) at the single-cell level using multiple weighted gene coexpression network analysis (WGCNA) and single-cell analysis. Methods. The transcriptome expression datasets of IS samples and single-cell RNA sequencing (scRNA-seq) profiles of cerebrovascular tissues were obtained by searching the Gene Expression Omnibus (GEO) database. First, gene pathway scoring was calculated via gene set variation analysis (GSVA) and was imported into multiple WGCNA to acquire key pathways and pathway-related hub genes. Furthermore, SCENIC was used to identify transcription factors (TFs) regulating these core genes using scRNA-seq data. Finally, the pseudotemporal trajectory analysis was used to analyse the role of these TFs on various cell types under hypoxic and normoxic conditions. Results. The scores of 186 KEGG pathways were obtained via GSVA using microarray expression profiles of 40 specimens. WGCNA of the KEGG pathways revealed the two following pathways: calcium signaling pathway and neuroactive ligand-receptor interaction pathways. Subsequently, WGCNA of the gene expression matrix of the samples revealed the calcium signaling pathway-related genes (AC079305.10, BCL10, BCL2A1, BRE-AS1, DYNLL2, EREG, and PTGS2) that were identified as core genes via correlation analysis. Furthermore, SCENIC and pseudotemporal analysis revealed JUN, IRF9, ETV5, and PPARA score gene-related TFs. Jun was found to be associated with hypoxia in endothelial cells, whereas Irf9 and Etv5 were identified as astrocyte-specific TFs associated with oxygen concentration in the mouse cerebral cortex. Conclusions. Calcium signaling pathway-related genes (AC079305.10, BCL10, BCL2A1, BRE-AS1, DYNLL2, EREG, and PTGS2) and TFs (JUN, IRF9, ETV5, and PPARA) were identified to play a key role in IS. This study provides a new perspective and basis for investigating the pathogenesis of IS and developing new therapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document