scholarly journals Artificially Edited Alleles of the Eukaryotic Translation Initiation Factor 4E1 Gene Differentially Reduce Susceptibility to Cucumber Mosaic Virus and Potato Virus Y in Tomato

2020 ◽  
Vol 11 ◽  
Author(s):  
Hiroki Atarashi ◽  
Wikum Harshana Jayasinghe ◽  
Joon Kwon ◽  
Hangil Kim ◽  
Yosuke Taninaka ◽  
...  

Eukaryotic translation initiation factors, including eIF4E, are susceptibility factors for viral infection in host plants. Mutation and double-stranded RNA-mediated silencing of tomato eIF4E genes can confer resistance to viruses, particularly members of the Potyvirus genus. Here, we artificially mutated the eIF4E1 gene on chromosome 3 of a commercial cultivar of tomato (Solanum lycopersicum L.) by using CRISPR/Cas9. We obtained three alleles, comprising two deletions of three and nine nucleotides (3DEL and 9DEL) and a single nucleotide insertion (1INS), near regions that encode amino acid residues important for binding to the mRNA 5' cap structure and to eIF4G. Plants homozygous for these alleles were termed 3DEL, 9DEL, and 1INS plants, respectively. In accordance with previous studies, inoculation tests with potato virus Y (PVY; type member of the genus Potyvirus) yielded a significant reduction in susceptibility to the N strain (PVYN), but not to the ordinary strain (PVYO), in 1INS plants. 9DEL among three artificial alleles had a deleterious effect on infection by cucumber mosaic virus (CMV, type member of the genus Cucumovirus). When CMV was mechanically inoculated into tomato plants and viral coat accumulation was measured in the non-inoculated upper leaves, the level of viral coat protein was significantly lower in the 9DEL plants than in the parental cultivar. Tissue blotting of microperforated inoculated leaves of the 9DEL plants revealed significantly fewer infection foci compared with those of the parental cultivar, suggesting that 9DEL negatively affects the initial steps of infection with CMV in a mechanically inoculated leaf. In laboratory tests, viral aphid transmission from an infected susceptible plant to 9DEL plants was reduced compared with the parental control. Although many pathogen resistance genes have been discovered in tomato and its wild relatives, no CMV resistance genes have been used in practice. RNA silencing of eIF4E expression has previously been reported to not affect susceptibility to CMV in tomato. Our findings suggest that artificial gene editing can introduce additional resistance to that achieved with mutagenesis breeding, and that edited eIF4E alleles confer an alternative way to manage CMV in tomato fields.

Plant Disease ◽  
2001 ◽  
Vol 85 (4) ◽  
pp. 447-447 ◽  
Author(s):  
X. D. Li ◽  
Y. Q. Li ◽  
H. G. Wang

Flue-cured tobacco is an important crop in Henan Province, China. During the 2000 growing season, many tobacco plants showed various degrees of mottling, mosaic, vein clearing, or vein necrosis in most of the counties. Some plants even died at an early stage of growth. A survey was conducted in May-June in several tobacco-growing counties, and the incidence of symptomatic plants in individual fields ranged from 10 to 85%. The most widely planted tobacco varieties, NC89, K326, and K346, were highly susceptible. Symptomatic plants were collected from Jiaxian and Xiangcheng counties and samples were tested by enzyme-linked immunosorbent assay for Tobacco mosaic virus (TMV), Cucumber mosaic virus (CMV), Potato virus Y (PVY), and Potato virus X (PVX). Of 65 samples tested, 21 were positive for only PVY, 16 positive for only CMV, one each was positive for only TMV or PVX. Nineteen samples were doubly infected with various combinations of these viruses and six were infected with combinations of three viruses. The causal agent(s) in the remaining sample could not be determined. In total, CMV was detected in 40 samples, PVY in 38, PVX in 10, and TMV in 7 samples. TMV and CMV used to be the most important viruses and PVY occurred only rarely. But PVY has become prevalent in Henan and in neighboring Shandong province (2). CMV and TMV were reported to be the most prevalent viruses in Shanxi (1) and Fujian Provinces (3). Because resistant varieties are not available, and mixed infections are more common, the results presented here explain why huge damage is occurring in tobacco crops in recent years. Some varieties are partially resistant to TMV and CMV but the varieties commonly grown are highly susceptible to PVY. Therefore, breeding for resistance to viruses, especially to PVY, is urgent to control the occurrence of tobacco viral diseases. References: (1) J. L. Cheng et al. Acta Tabacaria Sin. 4:43, 1998. (2) J. B. Wang et al. Chinese Tobacco Sci. 1:26, 1998. (3) L. H. Xie et al. Acta Tabacaria Sin. 2:25, 1994.


2003 ◽  
Vol 16 (10) ◽  
pp. 936-944 ◽  
Author(s):  
Neena Mitter ◽  
Emy Sulistyowati ◽  
Ralf G. Dietzgen

Post-transcriptional gene silencing (PTGS), an intrinsic plant defense mechanism, can be efficiently triggered by double stranded (ds)RNA-producing transgenes and can provide high level virus resistance by specific targeting of cognate viral RNA. The discovery of virus-encoded suppressors of PTGS led to concerns about the stability of such resistance. Here, we show that Cucumber mosaic virus (CMV) is able to suppress dsRNA-induced PTGS and the associated Potato virus Y (PVY) immunity in tobacco. CMV suppression supported only a transient PVY accumulation and did not prevent recovery of the transgenic plants from PVY infection. CMV inoculation resulted in strongly increased transgene mRNA levels due to suppression of PTGS, but accumulation of PVY-specific small interfering (si)RNA was unaffected. However, PVY accumulation in previously immune plants resulted in increased PVY siRNA levels and transgene mRNA was no longer detected, despite the presence of CMV. Transgene mRNA returned to high levels once PVY was no longer detected in CMV-infected plants. Recovered and chronically CMV-infected tissues were immune to further PVY infection.


2003 ◽  
Vol 132 (3) ◽  
pp. 1272-1282 ◽  
Author(s):  
Valérie Nicaise ◽  
Sylvie German-Retana ◽  
Raquel Sanjuán ◽  
Marie-Pierre Dubrana ◽  
Marianne Mazier ◽  
...  

2018 ◽  
Vol 3 (2) ◽  
pp. 381-390
Author(s):  
Rodolfo Velásquez-Valle ◽  
Luis Roberto Reveles-Torres ◽  
Jaime Mena-Covarrubias

A nivel mundial el cultivo de chile es afectado por más de 60 enfermedades virales; sin embargo, poco se conoce acerca de ellas en el área productora de chile seco del norte centro de México por lo que el objetivo del presente trabajo consistió en detectar la presencia y sintomatología de cinco virus en parcelas comerciales de chile seco en los estados mencionados. Plantas de chile de los tipos mirasol y ancho fueron muestreadas y se anotó la presencia de síntomas como enanismo, clorosis, deformación de hojas, defoliación, necrosis vascular y ramas unidas. Las muestras fueron analizadas mediante la técnica DAS- ELISA empleando los antisueros para el virus del mosaico del tabaco (Tobacco mosaic virus: TMV), mosaico del pepino (Cucumber mosaic virus: CMV), Y de la papa (Potato virus Y: PVY), moteado del chile (Pepper mottle virus: PepMoV) y jaspeado del tabaco (Tobacco etch virus: TEV). Esos virus fueron identificados en plantas de chile colectadas en las parcelas comerciales de chile seco de los tres estados antes mencionados.


2015 ◽  
Vol 105 (11) ◽  
pp. 1487-1495 ◽  
Author(s):  
Xue Feng ◽  
James R. Myers ◽  
Alexander V. Karasev

Resistance against Bean common mosaic virus (BCMV) in Phaseolus vulgaris is governed by six recessive resistance alleles at four loci. One of these alleles, bc-3, is able to protect P. vulgaris against all BCMV strains and against other potyviruses; bc-3 was identified as the eIF4E allele carrying mutated eukaryotic translation initiation factor gene. Here, we characterized a novel BCMV isolate 1755a that was able to overcome bc-2 and bc-3 alleles in common bean. Thus, it displayed a novel pattern of interactions with resistance genes in P. vulgaris, and was assigned to a new pathogroup, PG-VIII. The IVT7214 cultivar supporting the replication of BCMV-1755a was found to have the intact homozygous bc-3 cleaved amplified polymorphic sequences marker and corresponding mutations in the eIF4E allele that confer resistance to BCMV isolates from all other pathogroups as well as to other potyviruses. The VPg protein of 1755a had seven amino acid substitutions relative to VPgs of other BCMV isolates unable to overcome bc-3. The 1755a genome was found to be a recombinant between NL1, US1 (both PG-I), and a yet unknown BCMV strain. Analysis of the recombination patterns in the genomes of NL1 and US1 (PG-I), NY15P (PG-V), US10 and RU1-OR (PG-VII), and 1755a (PG-VIII), indicated that P1/HC-Pro cistrons of BCMV strains may interact with most resistance genes. This is the first report of a BCMV isolate able to overcome the bc-3 resistance allele, suggesting that the virus has evolved mechanisms to overcome multiple resistance genes available in common bean.


Sign in / Sign up

Export Citation Format

Share Document