scholarly journals Changes in Activity and Community Composition Shape Bacterial Responses to Size-Fractionated Marine DOM

2020 ◽  
Vol 11 ◽  
Author(s):  
Marta M. Varela ◽  
Tamara Rodríguez-Ramos ◽  
Elisa Guerrero-Feijóo ◽  
Mar Nieto-Cid

To study the response of bacteria to different size-fractions of naturally occurring dissolved organic matter (DOM), a natural prokaryotic community from North Atlantic mesopelagic waters (1000 m depth) was isolated and grown in (i) 0.1-μm filtered seawater (CONTROL), (ii) the low-molecular-weight (<1 kDa) DOM fraction (L-DOM), and (iii) the recombination of high- (>1 kDa) and low-molecular-weight DOM fractions (H + L-DOM), to test the potential effect of ultrafiltration on breaking the DOM size continuum. Prokaryotic abundance and leucine incorporation were consistently higher in the H + L-DOM niche than in the L-DOM and CONTROL treatments, suggesting a different interaction with each DOM fraction and the disruption of the structural DOM continuum by ultrafiltration, respectively. Rhodobacterales (Alphaproteobacteria) and Flavobacteriales (Bacteroidetes) were particularly enriched in L-DOM and closely related to the colored DOM (CDOM) fraction, indicating the tight link between these groups and changes in DOM aromaticity. Conversely, some other taxa that were rare or undetectable in the original bacterial community were enriched in the H + L-DOM treatment (e.g., Alteromonadales belonging to Gammaproteobacteria), highlighting the role of the rare biosphere as a seed bank of diversity against ecosystem disturbance. The relationship between the fluorescence of protein-like CDOM and community composition of populations in the H + L-DOM treatment suggested their preference for labile DOM. Conversely, the communities growing on the L-DOM niche were coupled to humic-like CDOM, which may indicate their ability to degrade more reworked DOM and/or the generation of refractory substrates (as by-products of the respiration processes). Most importantly, L- and/or H + L-DOM treatments stimulated the growth of unique bacterial amplicon sequence variants (ASVs), suggesting the potential of environmental selection (i.e., changes in DOM composition and availability), particularly in the light of climate change scenarios. Taken together, our results suggest that different size-fractions of DOM induced niche-specialization and differentiation of mesopelagic bacterial communities.

2011 ◽  
Vol 77 (8) ◽  
pp. 2791-2795 ◽  
Author(s):  
Johannes Rousk ◽  
Philip C. Brookes ◽  
Helen C. Glanville ◽  
David L. Jones

ABSTRACTWe studied how soil pH (pHs 4 to 8) influenced the mineralization of low-molecular-weight (LMW)-dissolved organic carbon (DOC) compounds, and how this compared with differences in microbial community structure. The mineralization of LMW-DOC compounds was not systematically connected to differences in soil pH, consistent with soil respiration. In contrast, the microbial community compositions differed dramatically. This suggests that microbial community composition data will be of limited use in improving the predictive power of soil C models.


2009 ◽  
Vol 75 (14) ◽  
pp. 4801-4812 ◽  
Author(s):  
Osana Bonilla-Findji ◽  
Gerhard J. Herndl ◽  
Jean-Pierre Gattuso ◽  
Markus G. Weinbauer

ABSTRACT A dilution and size fractionation approach was used to study the separate and combined effects of viruses and flagellates on prokaryotic production ([3H]leucine incorporation) and community composition (16S rRNA gene PCR and denaturing gradient gel electrophoresis [DGGE]) in the upper mixed layer and the deep chlorophyll maximum in the offshore Mediterranean Sea. Four experiments were established using differential filtration: a resource control without predators (C treatment), treatment in the presence of viruses (V treatment), treatment in the presence of flagellates (F treatment), and treatment in the presence of both predators (VF treatment). The V and VF treatments increased prokaryotic abundance (1.4- to 2.3-fold) and the number of DGGE bands (by up to 43%) and decreased prokaryotic production compared to the level for the C treatment (by 22 to 99%). For the F treatment, significant differences compared to the level for the C treatment were found as well, but trends were not consistent across experiments. The relative abundances of the high-nucleic-acid subgroups of prokaryotes with high scatter (HNAhs) in flow cytometer settings were lower in the V and VF treatments than in the C and F treatments. These differences were probably due to lysis of very active HNA prokaryotes in the V and VF treatments. Our results indicate that the presence of viruses or viruses plus flagellates sustains prokaryotic diversity and controls prokaryotic production by regulating the proportion of the highly active members of the community. Our data also suggest that lysis and grazing control influences the relationship between bacterial community composition and prokaryotic production.


Author(s):  
G.K.W. Balkau ◽  
E. Bez ◽  
J.L. Farrant

The earliest account of the contamination of electron microscope specimens by the deposition of carbonaceous material during electron irradiation was published in 1947 by Watson who was then working in Canada. It was soon established that this carbonaceous material is formed from organic vapours, and it is now recognized that the principal source is the oil-sealed rotary pumps which provide the backing vacuum. It has been shown that the organic vapours consist of low molecular weight fragments of oil molecules which have been degraded at hot spots produced by friction between the vanes and the surfaces on which they slide. As satisfactory oil-free pumps are unavailable, it is standard electron microscope practice to reduce the partial pressure of organic vapours in the microscope in the vicinity of the specimen by using liquid-nitrogen cooled anti-contamination devices. Traps of this type are sufficient to reduce the contamination rate to about 0.1 Å per min, which is tolerable for many investigations.


1998 ◽  
Vol 1 (5) ◽  
pp. 166-174 ◽  
Author(s):  
Evelyn R Hermes De Santis ◽  
Betsy S Laumeister ◽  
Vidhu Bansal ◽  
Vandana Kataria ◽  
Preeti Loomba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document