scholarly journals Genome Mining and Characterization of Biosynthetic Gene Clusters in Two Cave Strains of Paenibacillus sp.

2021 ◽  
Vol 11 ◽  
Author(s):  
Jolanta Lebedeva ◽  
Gabriele Jukneviciute ◽  
Rimvydė Čepaitė ◽  
Vida Vickackaite ◽  
Raminta Pranckutė ◽  
...  

The genome sequencing and mining of microorganisms from unexplored and extreme environments has become important in the process of identifying novel biosynthetic pathways. In the present study, the biosynthetic potential of Paenibacillus sp. strains 23TSA30-6 and 28ISP30-2 was investigated. Both strains were isolated from the deep oligotrophic Krubera-Voronja Cave and were found to be highly active against both Gram-positive and Gram-negative bacteria. Genome mining revealed a high number of biosynthetic gene clusters in the cave strains: 21 for strain 23TSA30-6 and 19 for strain 28ISP30-2. Single clusters encoding the biosynthesis of phosphonate, terpene, and siderophore, as well as a single trans-AT polyketide synthase/non-ribosomal peptide synthetase, were identified in both genomes. The most numerous clusters were assigned to the biosynthetic pathways of non-ribosomal peptides and ribosomally synthesized and post-translationally modified peptides. Although four non-ribosomal peptide synthetase gene clusters were predicted to be involved in the biosynthesis of known compounds (fusaricidin, polymyxin B, colistin A, and tridecaptin) of the genus Paenibacillus, discrepancies in the structural organization of the clusters, as well as in the substrate specificity of some adenylation domains, were detected between the reference pathways and the clusters in our study. Among the clusters involved in the biosynthesis of ribosomally synthesized peptides, only one was predicted to be involved in the biosynthesis of a known compound: paenicidin B. Most biosynthetic gene clusters in the genomes of the cave strains showed a low similarity with the reference pathways and were predicted to represent novel biosynthetic pathways. In addition, the cave strains differed in their potential to encode the biosynthesis of a few unique, previously unknown compounds (class II lanthipeptides and three non-ribosomal peptides). The phenotypic characterization of proteinaceous and volatile compounds produced by strains 23TSA30-6 and 28ISP30-2 was also performed, and the results were compared with those of genome mining.

2019 ◽  
Vol 116 (40) ◽  
pp. 19805-19814 ◽  
Author(s):  
Zachary L. Reitz ◽  
Clifford D. Hardy ◽  
Jaewon Suk ◽  
Jean Bouvet ◽  
Alison Butler

Genome mining of biosynthetic pathways streamlines discovery of secondary metabolites but can leave ambiguities in the predicted structures, which must be rectified experimentally. Through coupling the reactivity predicted by biosynthetic gene clusters with verified structures, the origin of the β-hydroxyaspartic acid diastereomers in siderophores is reported herein. Two functional subtypes of nonheme Fe(II)/α-ketoglutarate–dependent aspartyl β-hydroxylases are identified in siderophore biosynthetic gene clusters, which differ in genomic organization—existing either as fused domains (IβHAsp) at the carboxyl terminus of a nonribosomal peptide synthetase (NRPS) or as stand-alone enzymes (TβHAsp)—and each directs opposite stereoselectivity of Asp β-hydroxylation. The predictive power of this subtype delineation is confirmed by the stereochemical characterization of β-OHAsp residues in pyoverdine GB-1, delftibactin, histicorrugatin, and cupriachelin. The l-threo (2S, 3S) β-OHAsp residues of alterobactin arise from hydroxylation by the β-hydroxylase domain integrated into NRPS AltH, while l-erythro (2S, 3R) β-OHAsp in delftibactin arises from the stand-alone β-hydroxylase DelD. Cupriachelin contains both l-threo and l-erythro β-OHAsp, consistent with the presence of both types of β-hydroxylases in the biosynthetic gene cluster. A third subtype of nonheme Fe(II)/α-ketoglutarate–dependent enzymes (IβHHis) hydroxylates histidyl residues with l-threo stereospecificity. A previously undescribed, noncanonical member of the NRPS condensation domain superfamily is identified, named the interface domain, which is proposed to position the β-hydroxylase and the NRPS-bound amino acid prior to hydroxylation. Through mapping characterized β-OHAsp diastereomers to the phylogenetic tree of siderophore β-hydroxylases, methods to predict β-OHAsp stereochemistry in silico are realized.


MedChemComm ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 840-866 ◽  
Author(s):  
Jillian Romsdahl ◽  
Clay C. C. Wang

This review covers advances made in genome mining SMs produced by Aspergillus nidulans, Aspergillus fumigatus, Aspergillus niger, and Aspergillus terreus in the past six years (2012–2018). Genetic identification and molecular characterization of SM biosynthetic gene clusters, along with proposed biosynthetic pathways, is discussed in depth.


2016 ◽  
Vol 82 (19) ◽  
pp. 5795-5805 ◽  
Author(s):  
Min Xu ◽  
Yemin Wang ◽  
Zhilong Zhao ◽  
Guixi Gao ◽  
Sheng-Xiong Huang ◽  
...  

ABSTRACTGenome sequencing projects in the last decade revealed numerous cryptic biosynthetic pathways for unknown secondary metabolites in microbes, revitalizing drug discovery from microbial metabolites by approaches called genome mining. In this work, we developed a heterologous expression and functional screening approach for genome mining from genomic bacterial artificial chromosome (BAC) libraries inStreptomycesspp. We demonstrate mining from a strain ofStreptomyces rochei, which is known to produce streptothricins and borrelidin, by expressing its BAC library in the surrogate hostStreptomyces lividansSBT5, and screening for antimicrobial activity. In addition to the successful capture of the streptothricin and borrelidin biosynthetic gene clusters, we discovered two novel linear lipopeptides and their corresponding biosynthetic gene cluster, as well as a novel cryptic gene cluster for an unknown antibiotic fromS. rochei. This high-throughput functional genome mining approach can be easily applied to other streptomycetes, and it is very suitable for the large-scale screening of genomic BAC libraries for bioactive natural products and the corresponding biosynthetic pathways.IMPORTANCEMicrobial genomes encode numerous cryptic biosynthetic gene clusters for unknown small metabolites with potential biological activities. Several genome mining approaches have been developed to activate and bring these cryptic metabolites to biological tests for future drug discovery. Previous sequence-guided procedures relied on bioinformatic analysis to predict potentially interesting biosynthetic gene clusters. In this study, we describe an efficient approach based on heterologous expression and functional screening of a whole-genome library for the mining of bioactive metabolites fromStreptomyces. The usefulness of this function-driven approach was demonstrated by the capture of four large biosynthetic gene clusters for metabolites of various chemical types, including streptothricins, borrelidin, two novel lipopeptides, and one unknown antibiotic fromStreptomyces rocheiSal35. The transfer, expression, and screening of the library were all performed in a high-throughput way, so that this approach is scalable and adaptable to industrial automation for next-generation antibiotic discovery.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6580
Author(s):  
Charlotte Beck ◽  
Tetiana Gren ◽  
Francisco Javier Ortiz-López ◽  
Tue Sparholt Jørgensen ◽  
Daniel Carretero-Molina ◽  
...  

Streptomyces are well-known producers of a range of different secondary metabolites, including antibiotics and other bioactive compounds. Recently, it has been demonstrated that “silent” biosynthetic gene clusters (BGCs) can be activated by heterologously expressing transcriptional regulators from other BGCs. Here, we have activated a silent BGC in Streptomyces sp. CA-256286 by overexpression of a set of SARP family transcriptional regulators. The structure of the produced compound was elucidated by NMR and found to be an N-acetyl cysteine adduct of the pyranonaphtoquinone polyketide 3′-O-α-d-forosaminyl-(+)-griseusin A. Employing a combination of multi-omics and metabolic engineering techniques, we identified the responsible BGC. These methods include genome mining, proteomics and transcriptomics analyses, in combination with CRISPR induced gene inactivations and expression of the BGC in a heterologous host strain. This work demonstrates an easy-to-implement workflow of how silent BGCs can be activated, followed by the identification and characterization of the produced compound, the responsible BGC, and hints of its biosynthetic pathway.


2021 ◽  
Author(s):  
Guy Polturak ◽  
Martin Dippe ◽  
Michael J Stephenson ◽  
Rajesh Chandra Misra ◽  
Charlotte Owen ◽  
...  

Wheat is one of the most widely grown food crops in the world. However, it succumbs to numerous pests and pathogens that cause substantial yield losses. A better understanding of biotic stress responses in wheat is thus of major importance. Here we identify previously unknown pathogen-induced biosynthetic pathways that produce a diverse set of molecules, including flavonoids, diterpenes and triterpenes. These pathways are encoded by six biosynthetic gene clusters and share a common regulatory network. We further identify associations with known or novel phytoalexin clusters in other cereals and grasses. Our results significantly advance the understanding of chemical defenses in wheat and open up new avenues for enhancing disease resistance in this agriculturally important crop.


Author(s):  
Obul Reddy Bandapali ◽  
Frederik Teilfeldt Hansen ◽  
Alisha Parveen ◽  
Pradeep Phule ◽  
Emmagouni Sharath Kumar Goud ◽  
...  

Eurotium rubrum is a halophilic marine ascomycete, which can bear the hypersalinities of the Red Sea and proliferate, while most living entities cannot bear this condition. Recently, a 26.2 Mb assembled genome of this fungus had become available. Marine fungi are fascinating organisms capable of harboring several biosynthetic gene clusters (BGCs), which enables them to produce several natural compounds with antibiotic and anticancerous properties. Understanding the BGCs are critically important for the development of biotechnological applications and the discovery of future drugs. There is no knowledge available on the BGCs of this halophilic marine ascomycete. Herein, we set out to explore and characterize BGCs and the corresponding genes from E. rubrum using bioinformatic methods. We deciphered 36 BGCs in the genome of E. rubrum. These 36 BGCs can be grouped into four non-ribosomal peptide synthetase (NRPS) clusters, eight NRPS-like (NRPSL) BGCs, eight type I polyketide synthase (T1PKS), 11 terpene BGCs including one β-lactone cluster, four hybrid BGCs, and two siderophore BGCs. This study is an example of marine genomics application into potential future drug-like compound discovery.


Author(s):  
Patrick Videau ◽  
Kaitlyn Wells ◽  
Arun Singh ◽  
Jessie Eiting ◽  
Philip Proteau ◽  
...  

Cyanobacteria are prolific producers of natural products and genome mining has shown that many orphan biosynthetic gene clusters can be found in sequenced cyanobacterial genomes. New tools and methodologies are required to investigate these biosynthetic gene clusters and here we present the use of <i>Anabaena </i>sp. strain PCC 7120 as a host for combinatorial biosynthesis of natural products using the indolactam natural products (lyngbyatoxin A, pendolmycin, and teleocidin B-4) as a test case. We were able to successfully produce all three compounds using codon optimized genes from Actinobacteria. We also introduce a new plasmid backbone based on the native <i>Anabaena</i>7120 plasmid pCC7120ζ and show that production of teleocidin B-4 can be accomplished using a two-plasmid system, which can be introduced by co-conjugation.


Author(s):  
Subhasish Saha ◽  
Germana Esposito ◽  
Petra Urajova ◽  
Jan Mareš ◽  
Daniela Ewe ◽  
...  

Heterocytous cyanobacteria are among the most prolific source of bioactive secondary metabolites, including anabaenopeptins (APTs). A terrestrial filamentous Brasilonema sp. CT11 collected in Costa Rica bamboo forest, as black mat was studied using a multidisciplinary approach: genome mining and HPLC-HRMS/MS coupled with bionformatic analyses. Herein, we report the nearly complete genome consisting 8.79 Mbp with a GC content of 42.4%. Moreover, we report on three novel tryptophane-containing APTs; anabaenopeptin 788 (1), anabaenopeptin 802 (2) and anabaenopeptin 816 (3). Further, the structure of two homologues, i.e., anabaenopeptin 802 (2a) and anabaenopeptin 802 (2b) was determined by spectroscopic analysis (NMR and MS). Both compounds were shown to exert weak to moderate antiproliferative activity against HeLa cell lines. This study also provides the unique and diverse potential of biosynthetic gene clusters and an assessment of the predicted chemical space yet to be discovered from this genus.


Sign in / Sign up

Export Citation Format

Share Document