scholarly journals Evaluation of the Thermal Inactivation of a Salmonella Serotype Oranienburg Strain During Cocoa Roasting at Conditions Relevant to the Fine Chocolate Industry

2021 ◽  
Vol 12 ◽  
Author(s):  
Runan Yan ◽  
Gabriella Pinto ◽  
Rebecca Taylor-Roseman ◽  
Karen Cogan ◽  
Greg D’Alesandre ◽  
...  

Cocoa roasting produces and enhances distinct flavor of chocolate and acts as a critical control point for inactivation of foodborne pathogens in chocolate production. In this study, the inactivation kinetics of Salmonella enterica subsp. enterica serotype Oranienburg strain was assessed on whole cocoa beans using roasting protocols relevant to the fine chocolate industry. Beans were inoculated with 107–108 log10 CFU/bean of Salmonella Oranienburg and roasted at 100–150°C for 2–100 min. A greater than 5 log10 reduction of S. Oranienburg was experimentally achieved after 10-min roasting at 150°C. Data were fitted using log-linear and Weibull models. The log-linear models indicated that the roasting times (D) needed to achieve a decimal reduction of Salmonella at 100, 110, 115, 120, 130, and 140°C were 33.34, 18.57, 12.92, 10.50, 4.20, and 1.90 min, respectively. A Weibull model indicated a decrease in the Salmonella inactivation rate over time (β < 1). Statistical analysis indicated that the Weibull model fitted the data better compared to a log-linear model. These data demonstrate the efficacy of cocoa roasting in inactivation of Salmonella and may be used to guide food safety decision-making.

2017 ◽  
Vol 80 (12) ◽  
pp. 2014-2021 ◽  
Author(s):  
Evann L. Dufort ◽  
Jonathan Sogin ◽  
Mark R. Etzel ◽  
Barbara H. Ingham

ABSTRACT Thermal inactivation kinetics for single strains of Shiga toxin–producing Escherichia coli (STEC), Listeria monocytogenes, and Salmonella enterica were measured in acidified tryptic soy broth (TSB; pH 4.5) heated at 54°C. Inactivation curves also were measured for single-pathogen five-strain cocktails of E. coli O157:H7, L. monocytogenes, and S. enterica heated in tomato purée (pH 4.5) at 52, 54, 56, and 58°C. Inactivation curves were fit using log-linear and nonlinear (Weibull) models. The Weibull model yields the time for a 5-log reduction (t*) and a curve shape parameter (β). Decimal reduction times (D-values) and thermal resistance constants (z-values) from the two models were compared by defining t* = 5D* for the Weibull model. When the log-linear and Weibull models match at the 5-log reduction time, then t* = 5D* = 5D and D = D*. In 18 of 20 strains heated in acidified TSB, D and D* for the two models were not significantly different, although nonlinearity was observed in 35 of 60 trials. Similarly, in 51 of 52 trials for pathogen cocktails heated in tomato purée, D and D* were not significantly different, although nonlinearity was observed in 31% of trials. At a given temperature, D-values for S. enterica << L. monocytogenes < E. coli O157:H7 in tomato purée (pH 4.5). When using the two models, z-values calculated from the D-values were not significantly different for a given pathogen. Across all pathogens, z-values for E. coli O157:H7 and S. enterica were not different but were significantly lower than the z-values for L. monocytogenes. These results are useful for supporting process filings for tomato-based acidified food products with pH 4.5 and below and are relevant to small processors of tomato-based acidified canned foods who do not have the resources to conduct research on and validate pathogen lethality.


Author(s):  
Soon Kiat Lau ◽  
Rajendra Panth ◽  
Byron D Chaves ◽  
Curtis L Weller ◽  
Jeyamkondan Subbiah

Intervention technologies for inactivating Salmonella in whole chia seeds are currently limited. The determination of the thermal inactivation kinetics of Salmonella o n chia seeds and selection of an appropriate nonpathogenic surrogate will provide a knowledge foundation for selecting and optimizing thermal pasteurization processes for chia seeds. In this study, chia seed samples from three separate production lots were inoculated with a five strain Salmonella cocktail or Enterococcus faecium NRRL-B2354 and equilibrated to 0.53 aw at room temperature (25 °C). After equilibration for at least three days, the inoculated seeds were subjected to isothermal treatments at 80, 85, or 90 °C. Samples were taken out at six timepoints and enumerated for survivors. Initial dilution of whole chia seeds was performed in a filter bag at a 1:30 ratio after it was shown to have similar recovery to grinding the seeds. Survivor data were fitted to consolidated models consisting of a primary model (log-linear or Weibull) and one secondary model (Bigelow). E. faecium exhibited higher thermal resistance than Salmonella , suggesting its suitability as a conservative nonpathogenic surrogate. The Weibull model was a better fit for the survivor data than the log-linear model for both bacteria due to its lower root mean square error and corrected Akaike’s Information Criterion values. Measurements of lipid oxidation and fatty acid content indicated a few statistically different values compared to the control samples, but the overall difference in magnitudes were relatively small. The thermal inactivation kinetics of Salmonella and E. faecium o n chia seeds as presented in this study can serve as a basis for developing thermal pasteurization processes for chia seeds.


2019 ◽  
Vol 25 (6) ◽  
pp. 890-897
Author(s):  
Achisa C Mecha ◽  
Maurice S Onyango ◽  
Aoyi Ochieng ◽  
Maggy NB Momba

Microbial water pollution is a key concern leading to waterborne diseases. This study evaluated the disinfection of wastewater using ozonation. The following aspects were investigated: inactivation efficiency against <i>Escherichia coli, Salmonella</i> species, <i>Shigella</i> species, and <i>Vibrio cholerae</i>; modelling of inactivation kinetics using disinfection models; and evaluation of microbial regrowth studies. 99% bacterial inactivation was obtained within 15 min, irrespective of the water matrix, showing the strong oxidizing potential of ozone. The disinfection data were fitted into the log-linear and Weibull models. The survival curves were non-linear and fitted the Weibull model (fractional bias and normalized mean square error equal to 0.0), especially at high bacterial concentrations (10<sup>6</sup> CFU/mL). The inactivation occurred in two stages: an initial rapid stage (15 min) and a final slow stage exhibiting a tailing mechanism (15-45 min) probably as a result of the self-defence mechanisms adopted by the bacteria to limit oxidative stress. Considering the pattern of survival curves, no significant differences (<i>p</i> > 0.05) were observed among the four tested bacterial species; thus showing that ozone was effective against all the bacteria tested. There was minimal bacterial regrowth in the treated samples 24 h after ozone disinfection with reactivation values of 0-5% obtained.


2019 ◽  
Vol 82 (9) ◽  
pp. 1465-1471 ◽  
Author(s):  
JOSHUA B. GURTLER ◽  
VIJAY K. JUNEJA ◽  
DEANA R. JONES ◽  
ANUJ PUROHIT

ABSTRACT The heat resistance of three heat-resistant strains of Salmonella was determined in whole liquid egg (WLE). Inoculated samples in glass capillary tubes were completely immersed in a circulating water bath and held at 56, 58, 60, 62, and 64°C for predetermined lengths of time. The recovery medium was tryptic soy agar with 0.1% sodium pyruvate and 50 ppm of nalidixic acid. Survival data were fitted using log-linear, log-linear with shoulder, and Weibull models using GInaFiT version 1.7. Based on the R2 and mean square error, the log-linear with shoulder and Weibull models consistently produced a better fit to Salmonella survival curves obtained at these temperatures. Contaminated WLE must be heated at 56, 60, and 64°C for at least 33.2, 2.7, and 0.31 min, respectively, to achieve a 4-log reduction of Salmonella; 39.0, 3.1, and 0.34 min, respectively, for a 5-log reduction; and 45.0, 3.5, and 0.39 min, respectively, for a 6-log reduction. The z-values calculated from the D-values were 3.67 and 4.18°C for the log-linear with shoulder and Weibull models, respectively. Thermal death times presented in this study will be beneficial for WLE distributors and regulatory agencies when designing pasteurization processes to effectively eliminate Salmonella in WLE, thereby ensuring the microbiological safety of the product.


2009 ◽  
Vol 75 (22) ◽  
pp. 6998-7005 ◽  
Author(s):  
G. Stone ◽  
B. Chapman ◽  
D. Lovell

ABSTRACT In the commercial food industry, demonstration of microbiological safety and thermal process equivalence often involves a mathematical framework that assumes log-linear inactivation kinetics and invokes concepts of decimal reduction time (DT ), z values, and accumulated lethality. However, many microbes, particularly spores, exhibit inactivation kinetics that are not log linear. This has led to alternative modeling approaches, such as the biphasic and Weibull models, that relax strong log-linear assumptions. Using a statistical framework, we developed a novel log-quadratic model, which approximates the biphasic and Weibull models and provides additional physiological interpretability. As a statistical linear model, the log-quadratic model is relatively simple to fit and straightforwardly provides confidence intervals for its fitted values. It allows a DT -like value to be derived, even from data that exhibit obvious “tailing.” We also showed how existing models of non-log-linear microbial inactivation, such as the Weibull model, can fit into a statistical linear model framework that dramatically simplifies their solution. We applied the log-quadratic model to thermal inactivation data for the spore-forming bacterium Clostridium botulinum and evaluated its merits compared with those of popular previously described approaches. The log-quadratic model was used as the basis of a secondary model that can capture the dependence of microbial inactivation kinetics on temperature. This model, in turn, was linked to models of spore inactivation of Sapru et al. and Rodriguez et al. that posit different physiological states for spores within a population. We believe that the log-quadratic model provides a useful framework in which to test vitalistic and mechanistic hypotheses of inactivation by thermal and other processes.


2014 ◽  
Vol 77 (2) ◽  
pp. 276-283 ◽  
Author(s):  
HAYRIYE BOZKURT ◽  
DORIS H. D'SOUZA ◽  
P. MICHAEL DAVIDSON

Leafy greens, including spinach, have potential for human norovirus transmission through improper handling and/or contact with contaminated water. Inactivation of norovirus prior to consumption is essential to protect public health. Because of the inability to propagate human noroviruses in vitro, murine norovirus (MNV-1) and feline calicivirus (FCV-F9) have been used as surrogates to model human norovirus behavior under laboratory conditions. The objectives of this study were to determine thermal inactivation kinetics of MNV-1 and FCV-F9 in spinach, compare first-order and Weibull models, and measure the uncertainty associated with the process. D-values were determined for viruses at 50, 56, 60, 65, and 72°C in 2-ml vials. The D-values calculated from the first-order model (50 to 72°C) ranged from 0.16 to 14.57 min for MNV-1 and 0.15 to 17.39 min for FCV-9. Using the Weibull model, the tD for MNV-1 and FCV-F9 to destroy 1 log (D = 1) at the same temperatures ranged from 0.22 to 15.26 and 0.27 to 20.71 min, respectively. The z-values determined for MNV-1 were 11.66 ± 0.42°C using the Weibull model and 10.98 ± 0.58°C for the first-order model and for FCV-F9 were 10.85 ± 0.67°C and 9.89 ± 0.79°C, respectively. There was no difference in D- or z-value using the two models (P &gt;0.05). Relative uncertainty for dilution factor, personal counting, and test volume were 0.005, 0.0004, and ca. 0.84%, respectively. The major contribution to total uncertainty was from the model selected. Total uncertainties for FCV-F9 for the Weibull and first-order models were 3.53 to 7.56% and 11.99 to 21.01%, respectively, and for MNV-1, 3.10 to 7.01% and 13.14 to 16.94%, respectively. Novel and precise information on thermal inactivation of human norovirus surrogates in spinach was generated, enabling more reliable thermal process calculations to control noroviruses. The results of this study may be useful to the frozen food industry in designing blanching processes for spinach to inactivate or control noroviruses.


2016 ◽  
Vol 79 (9) ◽  
pp. 1482-1489
Author(s):  
HAYRIYE BOZKURT ◽  
JAIRUS R. D. DAVID ◽  
RYAN J. TALLEY ◽  
D. SCOTT LINEBACK ◽  
P. MICHAEL DAVIDSON

ABSTRACT Sporolactobacillus species have been occasionally isolated from spoiled foods and environmental sources. Thus, food processors should be aware of their potential presence and characteristics. In this study, the heat resistance and influence of the growth and recovery media on apparent heat resistance of Sporolactobacillus nakayamae spores were studied and described mathematically. For each medium, survivor curves and thermal death curves were generated for different treatment times (0 to 25 min) at different temperatures (70, 75, and 80°C) and Weibull and first-order models were compared. Thermal inactivation data for S. nakayamae spores varied widely depending on the media formulations used, with glucose yeast peptone consistently yielding the highest D-values for the three temperatures tested. For this same medium, the D-values ranged from 25.24 ± 1.57 to 3.45 ± 0.27 min for the first-order model and from 24.18 ± 0.62 to 3.50 ± 0.24 min for the Weibull model at 70 and 80°C, respectively. The z-values determined for S. nakayamae spores were 11.91 ± 0.29°C for the Weibull model and 11.58 ± 0.43°C for the first-order model. The calculated activation energy was 200.5 ± 7.3 kJ/mol for the first-order model and 192.8 ± 22.1 kJ/mol for the Weibull model. The Weibull model consistently produced the best fit for all the survival curves. This study provides novel and precise information on thermal inactivation kinetics of S. nakayamae spores that will enable reliable thermal process calculations for eliminating this spoilage bacterium.


2015 ◽  
Vol 81 (14) ◽  
pp. 4850-4859 ◽  
Author(s):  
Hayriye Bozkurt ◽  
Doris H. D'Souza ◽  
P. Michael Davidson

ABSTRACTHuman noroviruses (HNoV) and hepatitis A virus (HAV) have been implicated in outbreaks linked to the consumption of presliced ready-to-eat deli meats. The objectives of this research were to determine the thermal inactivation kinetics of HNoV surrogates (murine norovirus 1 [MNV-1] and feline calicivirus strain F9 [FCV-F9]) and HAV in turkey deli meat, compare first-order and Weibull models to describe the data, and calculate Arrhenius activation energy values for each model. TheD(decimal reduction time) values in the temperature range of 50 to 72°C calculated from the first-order model were 0.1 ± 0.0 to 9.9 ± 3.9 min for FCV-F9, 0.2 ± 0.0 to 21.0 ± 0.8 min for MNV-1, and 1.0 ± 0.1 to 42.0 ± 5.6 min for HAV. Using the Weibull model, thetD = 1(time to destroy 1 log) values for FCV-F9, MNV-1, and HAV at the same temperatures ranged from 0.1 ± 0.0 to 11.9 ± 5.1 min, from 0.3 ± 0.1 to 17.8 ± 1.8 min, and from 0.6 ± 0.3 to 25.9 ± 3.7 min, respectively. Thez(thermal resistance) values for FCV-F9, MNV-1, and HAV were 11.3 ± 2.1°C, 11.0 ± 1.6°C, and 13.4 ± 2.6°C, respectively, using the Weibull model. Thezvalues using the first-order model were 11.9 ± 1.0°C, 10.9 ± 1.3°C, and 12.8 ± 1.7°C for FCV-F9, MNV-1, and HAV, respectively. For the Weibull model, estimated activation energies for FCV-F9, MNV-1, and HAV were 214 ± 28, 242 ± 36, and 154 ± 19 kJ/mole, respectively, while the calculated activation energies for the first-order model were 181 ± 16, 196 ± 5, and 167 ± 9 kJ/mole, respectively. Precise information on the thermal inactivation of HNoV surrogates and HAV in turkey deli meat was generated. This provided calculations of parameters for more-reliable thermal processes to inactivate viruses in contaminated presliced ready-to-eat deli meats and thus to reduce the risk of foodborne illness outbreaks.


1988 ◽  
Vol 51 (4) ◽  
pp. 293-302 ◽  
Author(s):  
SILVIA MICHANIE ◽  
FRANK L. BRYAN ◽  
NELLY MENDOZA FERNÁNDEZ ◽  
MAGDA MOSCOSO VIZCARRA ◽  
DORA TABOADA P. ◽  
...  

Hazard analyses of food preparation practices were conducted in two households in Indiana (a settlement along the Peruvian Amazon River), in a household in a cluster of about a half dozen houses up river, and in three households in Belen (a district near Iquitos), Peru. These analyses consisted of watching all steps of the operation, recording temperatures throughout all these steps, and collecting samples of food and testing them for common foodborne pathogens and indicator organisms. Foods prepared included rice, plantains, yuca, dry fish, fresh fish, beef, and chicken. During cooking, foods attained temperatures of at least 93.3°C; they usually boiled. Such time-temperature exposure would kill vegetative forms of foodborne pathogenic bacteria, but not heat-resistant spores. When cooked foods were leftover, they were kept either on tables or on the unheated stoves or grills on which they were cooked. During this interval, at the prevailing ambient temperature and high humidity of the jungle region, conditions were such that considerable microbial growth could occur. Time of exposure, however, limited counts to the 105–106 level. In the evening, foods were only mildly reheated, if reheated at all, so temperatures were not attained in the center regions of the food that would have killed microorganisms that had multiplied during the holding period. Hence, the primary critical control point is holding between cooking and serving, but cooking and reheating are critical control points also.


2010 ◽  
Vol 73 (2) ◽  
pp. 372-375 ◽  
Author(s):  
ADRIANA VELASQUEZ ◽  
TASHA J. BRESLIN ◽  
BRADLEY P. MARKS ◽  
ALICIA ORTA-RAMIREZ ◽  
NICOLE O. HALL ◽  
...  

The internal muscle environment may enhance thermal resistance of bacterial pathogens. Based on the migration of pathogens into whole muscle products during marination, the validity of current thermal inactivation models for whole muscle versus ground products has been questioned. Consequently, the objective of this work was to compare thermal resistance of Salmonella in whole muscle versus ground pork. Irradiated samples of whole and ground pork loin (5.5 to 7.5 g) were exposed to a Salmonella-inoculated (108 CFU/ml) marinade (eight serovar cocktail) for 20 min, placed in sterile brass tubes (12.7 mm diameter), sealed, and heated isothermally at 55, 58, 60, 62, or 63°C, and surviving salmonellae were enumerated on Petrifilm aerobic count plates. The thermal lag times and initial bacterial counts were similar for both whole muscle and ground samples (P &gt; 0.05), with all samples having equivalent compositions, inocula, and thermal histories. Heating temperature and physical state of the meat (whole versus ground muscle) affected Salmonella inactivation, with greater thermal resistance observed in whole than in ground muscle (P &lt; 0.05). Assuming log-linear inactivation kinetics, Salmonella was 0.64 to 2.96 times more heat resistant in whole muscle than in ground pork. Therefore, thermal process validations for pork products should also account for the physical state of the product to ensure microbial safety.


Sign in / Sign up

Export Citation Format

Share Document