scholarly journals High throughput sequencing-based analysis of the soil bacterial community structure and functions of Tamarix shrubs in the lower reaches of the Tarim River

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12105
Author(s):  
Fangnan Xiao ◽  
Yuanyuan Li ◽  
Guifang Li ◽  
Yaling He ◽  
Xinhua Lv ◽  
...  

Tamarix is a dominant species in the Tarim River Basin, the longest inland river in China. Tamarix plays an important role in the ecological restoration of this region. In this study, to investigate the soil bacterial community diversity in Tamarix shrubs, we collected soil samples from the inside and edge of the canopy and the edge of nebkhas and non-nebkhas Tamarix shrubs located near the Yingsu section in the lower reaches of Tarim River. High throughput sequencing technology was employed to discern the composition and function of soil bacterial communities in nebkhas and non-nebkhas Tamarix shrubs. Besides, the physicochemical properties of soil and the spatial distribution characteristics of soil bacteria and their correlation were analyzed. The outcomes of this analysis demonstrated that different parts of Tamarix shrubs had significantly different effects on soil pH, total K (TK), available K (AK), ammonium N (NH4+), and available P (AP) values (P < 0.05), but not on soil moisture (SWC), total salt (TDS), electrical conductivity (EC), organic matter (OM), total N (TN), total P (TP), and nitrate N (NO3−) values. The soil bacterial communities identified in Tamarix shrubs were categorized into two kingdoms, 71 phyla, 161 classes, 345 orders, 473 families, and 702 genera. Halobacterota, unidentified bacteria, and Proteobacteria were found to be dominant phyla. The correlation between the soil physicochemical factors and soil bacterial community was analyzed, and as per the outcomes OM, AK, AP, EC, and NH4+ were found to primarily affect the structure of the soil bacterial community. SWC, TK and pH were positively correlated with each other, but negatively correlated with other soil factors. At the phyla level, a significantly positive correlation was observed between the Halobacterota and AP, OM as well as Bacteroidota and AK (P < 0.01), but a significantly negative correlation was observed between the Chloroflexi and AK, EC (P < 0.01). The PICRUSt software was employed to predict the functional genes. A total of 6,195 KEGG ortholog genes were obtained. The function of soil bacteria was annotated, and six metabolic pathways in level 1, 41 metabolic pathways in level 2, and 307 metabolic pathways in level 3 were enriched, among which the functional gene related to metabolism, genetic information processing, and environmental information processing was found to have the dominant advantage. The results showed that the nebkhas and canopy of Tamarix shrubs had a certain enrichment effect on soil nutrients content, and bacterial abundance and significant effects on the structure and function of the soil bacterial community.

Forests ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 51 ◽  
Author(s):  
Jiangmei Qiu ◽  
Jianhua Cao ◽  
Gaoyong Lan ◽  
Yueming Liang ◽  
Hua Wang ◽  
...  

Land use patterns can change the structure of soil bacterial communities. However, there are few studies on the effects of land use patterns coupled with soil depth on soil bacterial communities in the karst graben basin of Yunnan province, China. Consequently, to reveal the structure of the soil bacterial community at different soil depths across land use changes in the graben basins of the Yunnan plateau, the relationship between soil bacterial communities and soil physicochemical properties was investigated for a given area containing woodland, shrubland, and grassland in Yunnan province by using next-generation sequencing technologies coupled with soil physicochemical analysis. Our results indicated that the total phosphorus (TP), available potassium (AK), exchangeable magnesium (E-Mg), and electrical conductivity (EC) in the grassland were significantly higher than those in the woodland and shrubland, yet the total nitrogen (TN) and soil organic carbon (SOC) in the woodland were higher than those in the shrubland and grassland. Proteobacteria, Verrucomicrobia, and Acidobacteria were the dominant bacteria, and their relative abundances were different in the three land use types. SOC, TN, and AK were the most important factors affecting soil bacterial communities. Land use exerts strong effects on the soil bacterial community structure in the soil’s surface layer, and the effects of land use attenuation decrease with soil depth. The nutrient content of the soil surface layer was higher than that of the deep layer, which was more suitable for the survival and reproduction of bacteria in the surface layer.


2019 ◽  
Vol 131 ◽  
pp. 01091
Author(s):  
Jie Hong ◽  
Yue Yang ◽  
Yi Gao ◽  
LianQuan Zhong ◽  
QuanMing Xu ◽  
...  

The variation of bacterial community in lettuce continuous cropping was determined by high throughput sequencing. During the continuous planting of lettuce, the richness and diversity of bacterial communities in the soil increased, and the ACE index and Chao index increased by 40.21 % and 36.91 %, respectively. The proportion of Actinobacteria, Chloroflexi, Firmicutes and Nitrospirae in the soil increased, while the abundance of Acidobacteria, Bacteroidetes, Gemmatimonadetes, Planctomycetes and Proteobacteria gradually declined. And the abundance in the soil accounting for 1 % of the dominant bacterial genera increased to 11, among them, Anaerolinea, Bacillus, Nitrosomonas, and Xanthomonas etc became the dominant bacterium genus in the soil after lettuce continuous cropping. After the lettuce had been planted 8 times, the yield decreased by 21.20 % compared to the first harvest. Lettuce continuous cropping had an effect on bacterial community and lettuce yield to some extent.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 559
Author(s):  
Xue Dong ◽  
Xin Du ◽  
Zhi-Hu Sun ◽  
Xiang-Wei Chen

Thinning is an important management practice for reducing plant competition and improving wood production in forests. The residues from thinning can contain large amounts of carbon (C) and nitrogen (N), and the management methods applied directly after thinning can affect the input of nutrients to soil, change the availability of substrates to soil bacterial communities, and thus affect soil bacterial community structure. Our objective was to determine the effects of different thinning residue treatments on soil bacterial community structure and diversity. Illumina high-throughput sequencing technology was used to sequence the bacterial 16SrRNA V3–V4 variable region of the soil (0–10 cm) of a Larix olgensis plantation to compare the composition and diversity of soil bacterial communities following removal of thinning residues (tree stems plus tree crowns) (RM) and retention of thinning residues (crowns retained with stem removal) (RT) treatments. Total soil carbon (TC) and nitrogen (TN) content in the residue retention treatment were significantly greater than in residue removal treatments (p < 0.05). The relative abundance of the dominant soil bacteria phyla were, in descending order: Proteobacteria, Verrucomicrobia, Acidobacteria, Chloroflexi, Actinobacteria, Nitrospirae, Planctomycetes, Gemmatimonadetes, and Bacteroidetes, with a total relative abundance of more than 80%. Acidobacteria were enriched in the RM treatment, while Proteobateria, Actinobacteria and Bacteroidetes were greater in the RT treatment. Rhizobiales and Rhodospirillales (belonging to the α-Proteobacteria) were enriched in the RM treatment. Soil bacteria α diversity was not significantly different among different treatments. Spearman correlation analysis showed that the α diversity index was significantly negatively correlated with TC and TN. Lefse analysis revealed that 42 significant soil bacteria from phylum to genus were found in the two different thinning residue treatments. Redundancy analysis showed that soil TC and TN were the major drivers of variation in soil bacterial community structure. Overall, thinning residue retention increased the availability of resources to the soil bacterial community, thus changing bacterial community structure. This research provides a theoretical basis for the regulation of plantation forest soil fertility and quality.


Author(s):  
Yinhong Hu ◽  
Weiwei Yu ◽  
Bowen Cui ◽  
Yuanyuan Chen ◽  
Hua Zheng ◽  
...  

Human disturbance and vegetation are known to affect soil microorganisms. However, the interacting effects of pavement and plant species on soil bacterial communities have received far less attention. In this study, we collected soil samples from pine (Pinus tabuliformis Carr.), ash (Fraxinus chinensis), and maple (Acer truncatum Bunge) stands that grew in impervious, pervious, and no pavement blocks to investigate the way pavement, tree species, and their interaction influence soil bacterial communities by modifying soil physicochemical properties. Soil bacterial community composition and diversity were evaluated by bacterial 16S amplicon sequencing. The results demonstrated that soil bacterial community composition and diversity did differ significantly across pavements, but not with tree species. The difference in soil bacterial community composition across pavements was greater in pine stands than ash and maple stands. Soil bacterial diversity and richness indices decreased beneath impervious pavement in pine stands, and only bacterial richness indices decreased markedly in ash stands, but neither showed a significant difference across pavements in maple stands. In addition, bacterial diversity did not differ dramatically between pervious pavement and no pavement soil. Taken together, these results suggest that pavement overwhelmed the effects of tree species on soil bacterial communities, and had a greater effect on soil bacterial communities in pine stands, followed by ash and maple stands. This study highlights the importance of anthropogenic disturbance, such as pavement, which affects soil microbial communities.


2019 ◽  
Author(s):  
Juanjuan Fu ◽  
Yilan Luo ◽  
Pengyue Sun ◽  
Jinzhu Gao ◽  
Donghao Zhao ◽  
...  

Abstract Background: Perturbations in the abiotic stress directly or indirectly affect plants and root-associated microbial communities. Shade stress presents one of the major abiotic limitations for turfgrass growth, as light availability is severely reduced under a leaf canopy. Studies have shown that shade stress influences plant growth and alters plant metabolism, yet little is known about how it affects the structure of rhizosphere soil bacterial communities. In this study, a glasshouse experiment was conducted to examine the impact of shade stress on the physiology of two contrasting shade-tolerant turfgrasses and their rhizosphere soil microbes. Shade-tolerant dwarf lilyturf (Ophiopogon japonicus, OJ) and shade-intolerant perennial turf-type ryegrasss (Lolium perenne, LP) were used. Bacterial community composition was assayed using high-throughput sequencing. Results: Our physiochemical data showed that under shade stress, OJ maintained higher photosynthetic capacity and root growth, thus OJ was found to be more shade-tolerant than LP. Illumina sequencing data revealed that shade stress had little impact on the diversity of the OJ and LP’s bacterial communities, but instead impacted the composition of bacterial communities. The bacterial communities were mostly composed of Proteobacteria and Acidobacteria in OJ soil. Further pairwise fitting analysis showed that a positive correlation of shade-tolerance in two turfgrasses and their bacterial community compositions. Several soil properties (NO3--N, NH4+-N, AK) showed a tight coupling with several major bacterial communities under shade stress, indicating that they are important drivers determining bacterial community structures. Moreover, OJ shared core bacterial taxa known to promote plant growth and confer tolerance to shade stress, which suggests common principles underpinning OJ-microbe interactions. Conclusion: OJ was more shade-tolerant than LP. Shifts in rhizosphere soil bacterial community structure play a vital role in shade-tolerance of OJ plants.


2020 ◽  
Author(s):  
Pamela Bhattacharya ◽  
Samrat Mondol ◽  
Gautam Talukdar ◽  
Gopal Singh Rawat

AbstractSoil heterotrophic respiration-driven CO2 emissions, its impact on global warming and the mechanistic roles of soil bacterial communities in this process have been an area of active research. However, our knowledge regarding the effects of environmental changes on soil bacterial communities is limited. To this end, the climate-sensitive high-altitude alpine ecosystems offer ideal opportunities to investigate relationship between climate change and bacterial communities. While data from several high-altitude mountain regions suggest that local environment factors and geological patterns govern bacterial communities, no information is available from the Himalaya. Here we provide baseline information on seasonal soil bacterial community diversity and composition along a 3200-4000 m elevation gradient covering four alpine habitats (subalpine forest, alpine scrub, alpine meadow and moraine) in Gangotri National Park, western Himalaya. Bacterial metabarcoding data from 36 field-collected samples showed no elevation trend in the bacterial richness and a non-monotonous decrease in their diversity. Further, their community diversity and composition varied significantly among habitats along elevation but were stable seasonally within each habitat. The richness was primarily influenced by soil inorganic carbon (SOC) and total nitrogen (TN), whereas temperature, SOC and TN affected diversity and composition patterns. Given the importance of the Himalaya in the context of global carbon cycle this information will help in accurate modeling of climate adaptation scenarios of bacterial niches and their downstream impacts towards climate warming.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1329
Author(s):  
Zhi Yu ◽  
Kunnan Liang ◽  
Guihua Huang ◽  
Xianbang Wang ◽  
Mingping Lin ◽  
...  

Soil bacterial communities play crucial roles in ecosystem functions and biogeochemical cycles of fundamental elements and are sensitive to environmental changes. However, the response of soil bacterial communities to chronosequence in tropical ecosystems is still poorly understood. This study characterized the structures and co-occurrence patterns of soil bacterial communities in rhizosphere and bulk soils along a chronosequence of teak plantations and adjacent native grassland as control. Stand ages significantly shifted the structure of soil bacterial communities but had no significant impact on bacterial community diversity. Bacterial community diversity in bulk soils was significantly higher than that in rhizosphere soils. The number of nodes and edges in the bacterial co-occurrence network first increased and then decreased with the chronosequence. The number of strongly positive correlations per network was much higher than negative correlations. Available potassium, total potassium, and available phosphorus were significant factors influencing the structure of the bacterial community in bulk soils. In contrast, urease, total potassium, pH, and total phosphorus were significant factors affecting the structure of the bacterial community in the rhizosphere soils. These results indicate that available nutrients in the soil are the main drivers regulating soil bacterial community variation along a teak plantation chronosequence.


2021 ◽  
Author(s):  
Wenjuan Liu ◽  
Yufeng Guo ◽  
Guoli Chai ◽  
Wenbo Deng

Abstract Graphene (GR) has huge industrial and biomedical potential, and its adverse effect on soil microorganisms has been evaluated in some ecotoxicological studies. These studies focus on a single exposure to GR, but repeated exposures are more likely to occur in soil. In this study, we compared the impact of single and repeated exposures (one, two and three exposures that resulted in the same final concentration) of GR on structure, abundance and function of soil bacterial community based on soil enzyme activity and high-throughput sequencing. The activities of urease and fluorescein diacetate esterase and alpha diversity demonstrate that repeated exposure to GR increase the diversity of soil bacterial diversity after 4 days of incubation following the last application of GR to soil. And the PCoA and sample level clustering tree showed single exposure to GR after 4 days alter the soil bacterial community to some extent, but the difference has been narrowed with the extension of time. During the entire incubation process, no matter what kind of exposure scenarios to GR, the majority of bacterial phylotypes remained unchanged except for Proteobacteria and Actinobacteria according to the relative abundance of phylotypes.


2022 ◽  
Author(s):  
wenjuan liu ◽  
yufeng guo ◽  
guoli chai ◽  
wenbo deng

Abstract Graphene (GR) has huge industrial and biomedical potential, and its adverse effect on soil microorganisms has been evaluated in ecotoxicological studies. These studies focus on a single exposure to GR, but repeated exposures are more likely to occur. In this study, we compared the impact of single and repeated exposures of GR on structure, abundance and function of soil bacterial community based on soil enzyme activity and high-throughput sequencing. The activities of urease and fluorescein diacetate esterase and alpha diversity demonstrate that repeated exposure to GR increase the diversity of soil bacteria. The PCoA and sample level clustering tree showed single exposure to GR after 4 days alter the soil bacterial community to some extent. During the entire incubation process, no matter what kind of exposure scenarios to GR, the majority of bacterial phylotypes remained unchanged except for Proteobacteria and Actinobacteria according to the relative abundance of phylotypes.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7304
Author(s):  
Xingjia Xiang ◽  
Sean M. Gibbons ◽  
He Li ◽  
Haihua Shen ◽  
Haiyan Chu

Background Changes in aboveground community composition and diversity following shrub encroachment have been studied extensively. Recently, shrub encroachment was associated with differences in belowground bacterial communities relative to non-encroached grassland sites hundreds of meters away. This spatial distance between grassland and shrub sites left open the question of how soil bacterial communities associated with different vegetation types might differ within the same plot location. Methods We examined soil bacterial communities between shrub-encroached and adjacent (one m apart) grassland soils in Chinese Inner Mongolian, using high-throughput sequencing method (Illumina, San Diego, CA, USA). Results Shrub-encroached sites were associated with dramatic restructuring of soil bacterial community composition and predicted metabolic function, with significant increase in bacterial alpha-diversity. Moreover, bacterial phylogenic structures showed clustering in both shrub-encroached and grassland soils, suggesting that each vegetation type was associated with a unique and defined bacterial community by niche filtering. Finally, soil organic carbon (SOC) was the primary driver varied with shifts in soil bacterial community composition. The encroachment was associated with elevated SOC, suggesting that shrub-mediated shifts in SOC might be responsible for changes in belowground bacterial community. Discussion This study demonstrated that shrub-encroached soils were associated with dramatic restructuring of bacterial communities, suggesting that belowground bacterial communities appear to be sensitive indicators of vegetation type. Our study indicates that the increased shrub-encroached intensity in Inner Mongolia will likely trigger large-scale disruptions in both aboveground plant and belowground bacterial communities across the region.


Sign in / Sign up

Export Citation Format

Share Document