scholarly journals Temporal Changes in the Function of Bacterial Assemblages Associated With Decomposing Earthworms

2021 ◽  
Vol 12 ◽  
Author(s):  
Yao-Qin Sun ◽  
Yuan Ge

Soil invertebrate corpse decomposition is an ecologically significant, yet poorly understood, process affecting nutrient biogeochemical cycling in terrestrial ecosystems. Here, we attempted to answer how the substrate chemistry and microbial community change during soil invertebrate (earthworm) decomposition and what roles microbes play in this process. Specifically, the dead earthworms (Amynthas corticis) were buried in two soils where the earthworms inhabited, or not, until more than 50% of the earthworm mass was lost. For both soils, earthworms decomposed faster during the early stage (between 0 and 3 days), as reflected by the higher rate of decomposition and increased accumulation of dissolved organic matter (DOM). This decomposition pattern was paralleled by bacterial community dynamics, where bacterial richness and diversity were significantly higher during early decomposition (p < 0.05) with the relative abundances of many genera decreasing as decomposition progressed. The succession of the bacterial community composition was significantly correlated with time-course changes in DOM composition (p < 0.05). Particularly, more functional groups (e.g., microbes associated with carbon, nitrogen, and sulfur cycling) were identified to be linked with the change of a specific DOM type during the early decomposition phase. By exploring the ecologically important process of soil invertebrate decomposition and its associated bacterial communities, this study provides evidence, e.g., a statistically significant positive correlation between bacterial community and DOM compositions, which supports the widely recognized yet less-tested microbial community structure–function relationship hypothesis in invertebrate decomposition.

RSC Advances ◽  
2018 ◽  
Vol 8 (43) ◽  
pp. 24305-24311 ◽  
Author(s):  
Xiaolin Liu ◽  
Shou-Qing Ni ◽  
Wenshan Guo ◽  
Zhibin Wang ◽  
Hafiz Adeel Ahmad ◽  
...  

In this study, greenhouse gas emissions and microbial community succession during the realization of the partial nitrification (PN) process were studied.


2021 ◽  
Author(s):  
Md Majharul Islam ◽  
Rajarshi Bhattacharya ◽  
Biraj Sarkar ◽  
Pulak Kumar Maiti ◽  
Shouvik Mahanty ◽  
...  

Abstract The rhizospheric microbiome is capable of changing the physio-chemical properties of its own micro-environment and found to be indispensable in overall health of the host-plant. The interplay between the rhizospheric environment and the microbiota residing therein tune the physiology of the associated plant. In this study, we have determined how the soil properties and the host-plant remains as an important parameter for microbial community-dynamics in the rhizosphere of rice and peanut. In addition to check the physio-chemical parameters of the rhizospheric soil, we have also prepared the metagenomic DNA from each rhizospheric soil followed by high-throughput sequencing and sequence-analysis to predict the OTUs that represents the community structure. The alpha-diversity of the bacterial community in the RRN sample was highest, while the lowest was in PRS sample. Actinobacteria is the most predominant phylum in PRN, PRS and RRN whereas Acidobacteria in RRS. We found a clear shift in bacterial community over the rice and peanut rhizosphere and also over these host-rhizospheres from normal and high saline region. The rhizospheric bacterial community composition found to be affected by the close-by environmental factors. Thus, the rhizospheric bacterial community-structure is related to both the adjoining soil characters and the type of the hosts.


2000 ◽  
Vol 66 (2) ◽  
pp. 578-587 ◽  
Author(s):  
Lasse Riemann ◽  
Grieg F. Steward ◽  
Farooq Azam

ABSTRACT Bacterial community composition, enzymatic activities, and carbon dynamics were examined during diatom blooms in four 200-liter laboratory seawater mesocosms. The objective was to determine whether the dramatic shifts in growth rates and ectoenzyme activities, which are commonly observed during the course of phytoplankton blooms and their subsequent demise, could result from shifts in bacterial community composition. Nutrient enrichment of metazoan-free seawater resulted in diatom blooms dominated by a Thalassiosira sp., which peaked 9 days after enrichment (≈24 μg of chlorophylla liter−1). At this time bacterial abundance abruptly decreased from 2.8 × 106 to 0.75 × 106 ml−1, and an analysis of bacterial community composition, by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments, revealed the disappearance of three dominant phylotypes. Increased viral and flagellate abundances suggested that both lysis and grazing could have played a role in the observed phylotype-specific mortality. Subsequently, new phylotypes appeared and bacterial production, abundance, and enzyme activities shifted from being predominantly associated with the <1.0-μm size fraction towards the >1.0-μm size fraction, indicating a pronounced microbial colonization of particles. Sequencing of DGGE bands suggested that the observed rapid and extensive colonization of particulate matter was mainly by specialized α-Proteobacteria- andCytophagales-related phylotypes. These particle-associated bacteria had high growth rates as well as high cell-specific aminopeptidase, β-glucosidase, and lipase activities. Rate measurements as well as bacterial population dynamics were almost identical among the mesocosms indicating that the observed bacterial community dynamics were systematic and repeatable responses to the manipulated conditions.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4975 ◽  
Author(s):  
Bo Zhang ◽  
Lijuan Yan ◽  
Qiang Li ◽  
Jie Zou ◽  
Hao Tan ◽  
...  

BackgroundGanoderma lucidum, a valuable medicinal fungus, is widely distributed in China. It grows alongside with a complex microbial ecosystem in the substrate. As sequencing technology advances, it is possible to reveal the composition and functions of substrate-associated bacterial communities.MethodsWe analyzed the bacterial community dynamics in the substrate during the four typical growth stages ofG. lucidumusing next-generation sequencing.ResultsThe physicochemical properties of the substrate (e.g. acidity, moisture, total nitrogen, total phosphorus and total potassium) changed between different growth stages. A total of 598,771 sequences from 12 samples were obtained and assigned to 22 bacterial phyla.ProteobacteriaandFirmicuteswere the dominant phyla. Bacterial community composition and diversity significantly differed between the elongation stage and the other three growth stages. LEfSe analysis revealed a large number of bacterial taxa (e.g.Bacteroidetes,AcidobacteriaandNitrospirae) with significantly higher abundance at the elongation stage. Functional pathway prediction uncovered significant abundance changes of a number of bacterial functional pathways between the elongation stage and other growth stages. At the elongation stage, the abundance of the environmental information processing pathway (mainly membrane transport) decreased, whereas that of the metabolism-related pathways increased.DiscussionThe changes in bacterial community composition, diversity and predicted functions were most likely related to the changes in the moisture and nutrient conditions in the substrate with the growth ofG. lucidum, particularly at the elongation stage. Our findings shed light on theG. lucidum-bacteria-substrate relationships, which should facilitate the industrial cultivation ofG. lucidum.


mSphere ◽  
2017 ◽  
Vol 2 (3) ◽  
Author(s):  
Alexandra M. Linz ◽  
Benjamin C. Crary ◽  
Ashley Shade ◽  
Sarah Owens ◽  
Jack A. Gilbert ◽  
...  

ABSTRACT Lakes are excellent systems for investigating bacterial community dynamics because they have clear boundaries and strong environmental gradients. The results of our research demonstrate that bacterial community composition varies by year, a finding which likely applies to other ecosystems and has implications for study design and interpretation. Understanding the drivers and controls of bacterial communities on long time scales would improve both our knowledge of fundamental properties of bacterial communities and our ability to predict community states. In this specific ecosystem, bog lakes play a disproportionately large role in global carbon cycling, and the information presented here may ultimately help refine carbon budgets for these lakes. Finally, all data and code in this study are publicly available. We hope that this will serve as a resource for anyone seeking to answer their own microbial ecology questions using a multiyear time series. Bacteria play a key role in freshwater biogeochemical cycling, but long-term trends in freshwater bacterial community composition and dynamics are not yet well characterized. We used a multiyear time series of 16S rRNA gene amplicon sequencing data from eight bog lakes to census the freshwater bacterial community and observe annual and seasonal trends in abundance. The sites that we studied encompassed a range of water column mixing frequencies, which we hypothesized would be associated with trends in alpha and beta diversity. Each lake and layer contained a distinct bacterial community, with distinct levels of richness and indicator taxa that likely reflected the environmental conditions of each lake type sampled, including Actinobacteria in polymictic lakes (i.e., lakes with multiple mixing events per year), Methylophilales in dimictic lakes (lakes with two mixing events per year, usually in spring and fall), and “Candidatus Omnitrophica” in meromictic lakes (lakes with no recorded mixing events). The community present during each year at each site was also surprisingly unique. Despite unexpected interannual variability in community composition, we detected a core community of taxa found in all lakes and layers, including Actinobacteria tribe acI-B2 and Betaprotobacteria lineage PnecC. Although trends in abundance did not repeat annually, each freshwater lineage within the communities had a consistent lifestyle, defined by persistence, abundance, and variability. The results of our analysis emphasize the importance of long-term multisite observations, as analyzing only a single year of data or one lake would not have allowed us to describe the dynamics and composition of these freshwater bacterial communities to the extent presented here. IMPORTANCE Lakes are excellent systems for investigating bacterial community dynamics because they have clear boundaries and strong environmental gradients. The results of our research demonstrate that bacterial community composition varies by year, a finding which likely applies to other ecosystems and has implications for study design and interpretation. Understanding the drivers and controls of bacterial communities on long time scales would improve both our knowledge of fundamental properties of bacterial communities and our ability to predict community states. In this specific ecosystem, bog lakes play a disproportionately large role in global carbon cycling, and the information presented here may ultimately help refine carbon budgets for these lakes. Finally, all data and code in this study are publicly available. We hope that this will serve as a resource for anyone seeking to answer their own microbial ecology questions using a multiyear time series.


2021 ◽  
Author(s):  
Md Majharul Islam ◽  
Rajarshi Bhattacharya ◽  
Biraj Sarkar ◽  
Pulak Kumar Maiti ◽  
Shouvik Mahanty ◽  
...  

Abstract The rhizospheric microbiome is capable of changing the physio-chemical properties of its own micro-environment and found to be indispensable in overall health of the host-plant. The interplay between the rhizospheric environment and the microbiota residing therein tune the physiology of the associated plant. In this study, we have determined how the soil properties and the host-plant remains as an important parameter for microbial community-dynamics in the rhizosphere of rice and peanut. In addition to check the physio-chemical parameters of the rhizospheric soil, we have also prepared the metagenomic DNA from each rhizospheric soil followed by high-throughput sequencing and sequence-analysis to predict the OTUs that represents the community structure. The alpha-diversity of the bacterial community in the RRN sample was highest, while the lowest was in PRS sample. Actinobacteria is the most predominant phylum in PRN, PRS and RRN whereas Acidobacteria in RRS. We found a clear shift in bacterial community over the rice and peanut rhizosphere and also over these host-rhizospheres from normal and high saline region. The rhizospheric bacterial community composition found to be affected by the close-by environmental factors. Thus, the rhizospheric bacterial community-structure is related to both the adjoining soil characters and the type of the hosts.


2017 ◽  
Author(s):  
Alexandra M. Linz ◽  
Benjamin C. Crary ◽  
Ashley Shade ◽  
Sarah Owens ◽  
Jack A. Gilbert ◽  
...  

AbstractBacteria play a key role in freshwater biogeochemical cycling, but long-term trends in freshwater bacterial community composition and dynamics are not yet well characterized. We used a multi-year time series of 16S rRNA gene amplicon sequencing data from eight bog lakes to census the freshwater bacterial community and observe annual and seasonal trends in abundance. Multiple sites and sampling events were necessary to begin to fully describe the bacterial communities. Each lake and layer contained a distinct bacterial community, with distinct levels of richness and indicator taxa that likely reflected the environmental conditions of each site. The community present in each year and site was also unique. Despite high interannual variability in community composition, we detected a core community of ubiquitous freshwater taxa. Although trends in abundance did not repeat annually, each freshwater lineage within the communities had a consistent lifestyle, defined by persistence, abundance, and variability. The results of our analysis emphasize the importance of long-term observations, as analyzing only a single year of data would not have allowed us to describe the dynamics and composition of these freshwater bacterial communities to the extent presented here.ImportanceLakes are excellent systems for investigating bacterial community dynamics because they have clear boundaries and strong environmental gradients. The results of our research demonstrate that bacterial community dynamics operate on multi-year timescales, a finding which likely applies to other ecosystems, with implications for study design and interpretation. Understanding the drivers and controls of bacterial communities on long time scales would improve both our knowledge of fundamental properties of bacterial communities, and our ability to predict community states. In this specific ecosystem, bog lakes play a disproportionately large role in global carbon cycling, and the information presented here may ultimately help refine carbon budgets for these lakes. Finally, all data and code in this study are publicly available. We hope that this will serve as a resource to anyone seeking to answer their own microbial ecology questions using a multi-year time series.


2021 ◽  
Vol 12 (1) ◽  
pp. 157-172
Author(s):  
Shankar G. Shanmugam ◽  
Normie W. Buehring ◽  
Jon D. Prevost ◽  
William L. Kingery

Our understanding on the effects of tillage intensity on the soil microbial community structure and composition in crop production systems are limited. This study evaluated the soil microbial community composition and diversity under different tillage management systems in an effort to identify management practices that effectively support sustainable agriculture. We report results from a three-year study to determine the effects on changes in soil microbial diversity and composition from four tillage intensity treatments and two residue management treatments in a corn-soybean production system using Illumina high-throughput sequencing of 16S rRNA genes. Soil samples were collected from tillage treatments at locations in the Southern Coastal Plain (Verona, Mississippi, USA) and Southern Mississippi River Alluvium (Stoneville, Mississippi, USA) for soil analysis and bacterial community characterization. Our results indicated that different tillage intensity treatments differentially changed the relative abundances of bacterial phyla. The Mantel test of correlations indicated that differences among bacterial community composition were significantly influenced by tillage regime (rM = 0.39, p ≤ 0.0001). Simpson’s reciprocal diversity index indicated greater bacterial diversity with reduction in tillage intensity for each year and study location. For both study sites, differences in tillage intensity had significant influence on the abundance of Proteobacteria. The shift in the soil bacterial community composition under different tillage systems was strongly correlated to changes in labile carbon pool in the system and how it affected the microbial metabolism. This study indicates that soil management through tillage intensity regime had a profound influence on diversity and composition of soil bacterial communities in a corn-soybean production system.


Sign in / Sign up

Export Citation Format

Share Document