scholarly journals Deciphering the Shifts in Microbial Community Diversity From Material Pretreatment to Saccharification Process of Fuyu-Flavor Baijiu

2021 ◽  
Vol 12 ◽  
Author(s):  
Jiamu Kang ◽  
Yunan Hu ◽  
Ziyuan Ding ◽  
Li Ye ◽  
Haoran Li ◽  
...  

The microbiota of the pretreatment phase is crucial to the assembly of the microbial community in the saccharification of fuyu-flavor baijiu. This study investigates the shifts in microbial community diversity from the pretreatment of raw materials to the end of saccharification. High-throughput sequencing reveals that Lactobacillus, Weissella, and Bacillus in the bacterial community and Rhizopus, Candida, Pichia, and Aspergillus in the fungal community are predominant during raw material pretreatment and saccharification processes. Also, 11 bacterial genera, including Bacillus, Lactobacillus, Leuconostoc, Weissella, Lactococcus, and Acetobacter, and eight yeast genera, including Candida, Pichia, Saccharomyces, and Wickerhamomyces, were isolated from the initial saccharification stage by culture-dependent approaches. Sourcetracker analysis indicates that the cooling grains and rice husks were the main contributors to the bacterial community composition of the saccharification process, and Qu was the main contributor to the shaping of the fungal community structure during the saccharification process. Abundance variation of the predictive functional profiles of microbial communities encoding for key enzymes involved in pyruvate metabolism, starch and sucrose metabolism, and glycolysis/gluconeogenesis during the pretreatment and saccharification phases were inferred by PICRUSt2 analysis. The results of this study will be utilized to produce consistently high-quality fuyu-flavor baijiu via better controlling the shaping of microbial community structures during the pretreatment and fermentation processes.

2021 ◽  
Author(s):  
Dongla Gao ◽  
Weihua Wang ◽  
Zhanjiang Han ◽  
Qian Xi ◽  
Ruicheng Guo ◽  
...  

Raw milk and fermented milk are rich in microbial resources, which are essential for the formation of texture, flavor and taste. In order to gain a deeper knowledge of the bacterial and fungal community diversity in local raw milk and home-made yogurts from Sayram town, Baicheng county, Akesu area, southern of Xinjiang, China,30 raw milk and 30 home-made yogurt samples were collected and experiment of high-throughput sequencing was implemented.The results of experiments revealed the species of fungi in raw milk was the most, and the species of bacteria in fermented milk was the least.Based on principal component analysis (PCA), it was found that the bacterial and fungal community structure differed in samples from two types of dairy products.And the presence of 15 bacterial and 12 fungal phyla, comprising 218 bacterial and 495 fungal genera respectively, among all samples. Firmicutes and Ascomycota,Lactobacillus and Candida were the predominant phyla and genera of bacteria and fungi, respectively. The results indicated that the microbial community of raw milk differs from home-made yogurts due to sampling location and manufacturing process. The study suggested that high-throughput sequencing could provide a better understanding of microbiological diversity as well as lay a theoretical foundation for selecting beneficial microbial resources from this natural yogurt.


2021 ◽  
Author(s):  
Haiyan Duan ◽  
Minghua Ji ◽  
Ai Chen ◽  
Shiqiu Xie ◽  
Junsong Sun ◽  
...  

Abstract Co-composting of recycled cow manure and waste bedding material has been used to convert both agricultural wastes to biofertilizers. This study explored the succession of microbial community, metabolic function and substances conversion capacities during 60 days’ co-composting using high throughput sequencing technology. The study revealed that co-composting of cow manure and bedding material waste at a ratio of 1.32 (CM+B) had the highest efficiency among four treatments. The bacterial and fungal community diversity changed significantly during the co-composting of CM+B group, and the major phyla included Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria and Ascomycota. PICRUSt and FUNGuild analysis showed that carbohydrate, lipid metabolism and especially nitrogen fixation were enhanced in the thermophilic phase, while animal and plant pathogens were not detected after the co-composting. Wood saprotrophs became the dominant fungal group (89.1%) in the maturation phase. Canonical correlation analysis (CCA) and redundancy analysis (RDA) confirmed that temperature influenced bacterial community succession more than it influenced fungal community succession. Ruminiclostridium had a significantly positive relationship with temperature (p_value < 0.05), while pH and C/N had significant effect on the fungal (p_value < 0.05), and Penicillium and Mortierella were significantly related to moisture (p_value < 0.05). This work describes an efficient methodology to deal with co-composting systems that had been successfully applied in agricultural wastes treatment, enabling further understanding in mechanisms underlying the substance conversion and the involved microbial community succession in sophisticated composting system.


PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0168166 ◽  
Author(s):  
Lin Yang ◽  
Hui-lin Yang ◽  
Zong-cai Tu ◽  
Xiao-lan Wang

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Huanming Liu ◽  
Guangxun Tan ◽  
Qitong Chen ◽  
Weiwei Dong ◽  
Ping Chen ◽  
...  

Abstract Background Chinese strong-flavor baijiu (CSFB), one of the three major baijiu types, is the most popular baijiu type among consumers in China. A variety of microbes are involved in metabolizing raw materials to produce ethanol and flavor substances during fermentation, which fundamentally determined the quality of baijiu. It is of great importance to study microbial community of fermented grains (zaopei) during baijiu brewing process for improving its quality. In this study, we firstly used propidium monoazide (PMA) to treat zaopei samples from 5-year pit and 20-year pit for removing the interference of non-viable fungi, and analyzed the diversity of total fungi and viable fungi by quantitative PCR (qPCR) and high-throughput sequencing (HTS) based on ITS2 gene. Results The results showed that total fungi and viable fungi displayed no significant differences at OTU, phylum, or genus levels during fermentation within two kinds of pits. A total of 6 phyla, 19 classes, and 118 genera in fungi were found based on OTUs annotation in zaopei samples from 5-year pit and 20-year pit. Besides, non-viable fungi had little effect on the fungal community diversity during the fermentation cycle. It was found that the most dominant viable fungi belonged to Saccharomyces, Kazachstania, Naumovozyma, and Trichosporon, and Naumovozyma was firstly detected in zaopei samples of CSFB. Moreover, based on the variation of flavor substances in zaopei samples, the quality of CSFB produced from older pit was better than that produced from younger pit. Conclusion The non-viable fungi had little effect on the fungal diversity, structure, and relative abundance in zaopei samples of CSFB, and Naumovozyma was firstly detected in zaopei samples of CSFB. Our findings can be applied as guidance for improving the quality and stability of CSFB.


PLoS ONE ◽  
2018 ◽  
Vol 13 (3) ◽  
pp. e0193097 ◽  
Author(s):  
Yu-jie Wei ◽  
Yun Wu ◽  
Yin-zhuo Yan ◽  
Wan Zou ◽  
Jie Xue ◽  
...  

2015 ◽  
Vol 65 (3) ◽  
pp. 1741-1751 ◽  
Author(s):  
Wenjun Liu ◽  
Xiaoxia Xi ◽  
Qimuge Sudu ◽  
Laiyu Kwok ◽  
Zhuang Guo ◽  
...  

Author(s):  
Pan Wan ◽  
Anzhi Wei

Soil microbiota play an important and diverse roles in horticultural crop nutrition or productivity. However, the soil microbial community composition and the relationships within the taxa in the microbial community populations after cover grass treatments in apple orchards are not well understood. We analysed the microbial community diversity, composition and microbial network of an apple orchard after covering with native wild grasses at different intensities for 2 years in the Loess Plateau, China. The cover grass intensities were 0%, 20%, 40%, 60% and 80%. Soil microbial community diversity was not obviously change by cover grass in the apple orchard. Cover grass altered the microbial bacterial community compositions, their changes exhibited significant differences at the phylum level that were caused by the Proteobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Nitrospirae. However, low-intensity (20%) and moderate-intensity (40%) treatments were the only cover grass intensities that altered the soil fungal community composition; but their changes did not exhibit significant differences at the phylum level. The positive links among the bacterial taxa decreased with the increasing cover intensity, primarily among Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi and Gemmatimonadetes. Although cover grass increased the positive links between fungal taxa, these taxa were reduced with the increasing cover intensity. Here we demonstrate that cover grass changed the soil microbial community, and the changes may be attributed to the given phyla in the bacterial community; furthermore, the antagonistic effect between the soil bacterial and fungal communities was significantly increased by higher coverage than by lower coverage.


Sign in / Sign up

Export Citation Format

Share Document