scholarly journals Effects of Ocean Acidification on Resident and Active Microbial Communities of Stylophora pistillata

2021 ◽  
Vol 12 ◽  
Author(s):  
Marcelle Muniz Barreto ◽  
Maren Ziegler ◽  
Alexander Venn ◽  
Eric Tambutté ◽  
Didier Zoccola ◽  
...  

Ocean warming and ocean acidification (OA) are direct consequences of climate change and affect coral reefs worldwide. While the effect of ocean warming manifests itself in increased frequency and severity of coral bleaching, the effects of ocean acidification on corals are less clear. In particular, long-term effects of OA on the bacterial communities associated with corals are largely unknown. In this study, we investigated the effects of ocean acidification on the resident and active microbiome of long-term aquaria-maintained Stylophora pistillata colonies by assessing 16S rRNA gene diversity on the DNA (resident community) and RNA level (active community). Coral colony fragments of S. pistillata were kept in aquaria for 2 years at four different pCO2 levels ranging from current pH conditions to increased acidification scenarios (i.e., pH 7.2, 7.4, 7.8, and 8). We identified 154 bacterial families encompassing 2,047 taxa (OTUs) in the resident and 89 bacterial families including 1,659 OTUs in the active communities. Resident communities were dominated by members of Alteromonadaceae, Flavobacteriaceae, and Colwelliaceae, while active communities were dominated by families Cyclobacteriacea and Amoebophilaceae. Besides the overall differences between resident and active community composition, significant differences were seen between the control (pH 8) and the two lower pH treatments (7.2 and 7.4) in the active community, but only between pH 8 and 7.2 in the resident community. Our analyses revealed profound differences between the resident and active microbial communities, and we found that OA exerted stronger effects on the active community. Further, our results suggest that rDNA- and rRNA-based sequencing should be considered complementary tools to investigate the effects of environmental change on microbial assemblage structure and activity.

2022 ◽  
Vol 10 (1) ◽  
pp. 140
Author(s):  
Wenjing Liu ◽  
Kai Xue ◽  
Runpeng Hu ◽  
Jizhong Zhou ◽  
Joy D. Van Nostrand ◽  
...  

Short rotation coppice (SRC) is increasingly being adopted for bioenergy production, pollution remediation and land restoration. However, its long-term effects on soil microbial communities are poorly characterized. Here, we studied soil microbial functional genes and their biogeographic pattern under SRC with willow trees as compared to those under permanent grassland (C). GeoChip analysis showed a lower functional gene diversity in SRC than in C soil, whereas microbial ATP and respiration did not change. The SRC soil had lower relative abundances of microbial genes encoding for metal(-oid) resistance, antibiotic resistance and stress-related proteins. This indicates a more benign habitat under SRC for microbial communities after relieving heavy metal stress, consistent with the lower phytoavailability of some metals (i.e., As, Cd, Ni and Zn) and higher total organic carbon, NO3−-N and P concentrations. The microbial taxa–area relationship was valid in both soils, but the space turnover rate was higher under SRC within 0.125 m2, which was possibly linked to a more benign environment under SRC, whereas similar values were reached beyond thisarea. Overall, we concluded that SRC management can be considered as a phytotechnology that ameliorates the habitat for soil microorganisms, owing to TOC and nutrient enrichment on the long-term.


2021 ◽  
Vol 12 ◽  
Author(s):  
Charles S. Cockell ◽  
Bettina Schaefer ◽  
Cornelia Wuchter ◽  
Marco J. L. Coolen ◽  
Kliti Grice ◽  
...  

We report on the effect of the end-Cretaceous impact event on the present-day deep microbial biosphere at the impact site. IODP-ICDP Expedition 364 drilled into the peak ring of the Chicxulub crater, México, allowing us to investigate the microbial communities within this structure. Increased cell biomass was found in the impact suevite, which was deposited within the first few hours of the Cenozoic, demonstrating that the impact produced a new lithological horizon that caused a long-term improvement in deep subsurface colonization potential. In the biologically impoverished granitic rocks, we observed increased cell abundances at impact-induced geological interfaces, that can be attributed to the nutritionally diverse substrates and/or elevated fluid flow. 16S rRNA gene amplicon sequencing revealed taxonomically distinct microbial communities in each crater lithology. These observations show that the impact caused geological deformation that continues to shape the deep subsurface biosphere at Chicxulub in the present day.


2013 ◽  
Vol 368 (1627) ◽  
pp. 20130186 ◽  
Author(s):  
Jasmin A. Godbold ◽  
Martin Solan

Warming of sea surface temperatures and alteration of ocean chemistry associated with anthropogenic increases in atmospheric carbon dioxide will have profound consequences for a broad range of species, but the potential for seasonal variation to modify species and ecosystem responses to these stressors has received little attention. Here, using the longest experiment to date (542 days), we investigate how the interactive effects of warming and ocean acidification affect the growth, behaviour and associated levels of ecosystem functioning (nutrient release) for a functionally important non-calcifying intertidal polychaete ( Alitta virens ) under seasonally changing conditions. We find that the effects of warming, ocean acidification and their interactions are not detectable in the short term, but manifest over time through changes in growth, bioturbation and bioirrigation behaviour that, in turn, affect nutrient generation. These changes are intimately linked to species responses to seasonal variations in environmental conditions (temperature and photoperiod) that, depending upon timing, can either exacerbate or buffer the long-term directional effects of climatic forcing. Taken together, our observations caution against over emphasizing the conclusions from short-term experiments and highlight the necessity to consider the temporal expression of complex system dynamics established over appropriate timescales when forecasting the likely ecological consequences of climatic forcing.


Author(s):  
A. Shore ◽  
R. D. Day ◽  
J. A. Stewart ◽  
C.A. Burge

Ocean acidification (OA) threatens the growth and function of coral reef ecosystems. A key component to coral health is the microbiome, but little is known about the impact of OA on coral microbiomes. A submarine CO2 vent at Maug Island in the Northern Marianas Islands provides a natural pH gradient to investigate coral responses to long-term OA conditions. Three coral species (Pocillopora eydouxi, Porites lobata, and Porites rus) were sampled from three sites where mean seawater pH is 8.04, 7.98, and 7.94. We characterized coral bacterial communities (using 16S rRNA gene sequencing) and determined pH of the extracellular calcifying fluid (ECF) (using skeletal boron isotopes) across the seawater pH gradient. Bacterial communities of both Porites species stabilized (decreases in community dispersion) with decreased seawater pH, coupled with large increases in the abundance of Endozoicomonas, an endosymbiont. P. lobata experienced a significant decrease in ECF pH near the vent, whereas P. rus experienced a trending decrease in ECF pH near the vent. By contrast, Pocillopora exhibited bacterial community destabilization (increases in community dispersion), with significant decreases in Endozoicomonas abundance, while its ECF pH remained unchanged across the pH gradient. Our study shows that OA has multiple consequences on Endozoicomonas abundance and suggests that Endozoicomonas abundance may be an indicator of coral response to OA. We reveal an interesting dichotomy between two facets of coral physiology (regulation of bacterial communities and regulation of calcification), highlighting the importance of multidisciplinary approaches to understanding coral health and function in a changing ocean. IMPORTANCE Ocean acidification (OA) is a consequence of anthropogenic CO2 emissions that is negatively impacting marine ecosystems such as coral reefs. OA affects many aspects of coral physiology, including growth (i.e. calcification) and disrupting associated bacterial communities. Coral-associated bacteria are important for host health, but it remains unclear how coral-associated bacterial communities will respond to future OA conditions. We document changes in coral-associated bacterial communities and changes to calcification physiology with long-term exposure to decreases in seawater pH that are environmentally relevant under mid-range IPCC emission scenarios (0.1 pH units). We also find species-specific responses that may reflect different responses to long-term OA. In Pocillopora, calcification physiology was highly regulated despite changing seawater conditions. In Porites spp., changes in bacterial communities do not reflect a breakdown of coral-bacterial symbiosis. Insights into calcification and host-microbe interactions are critical to predicting the health and function of different coral taxa to future OA conditions.


Soil Research ◽  
2019 ◽  
Vol 57 (3) ◽  
pp. 228
Author(s):  
C. Celestina ◽  
P. W. G. Sale ◽  
J. R. Hunt ◽  
C. Tang ◽  
A. E. Franks

A large-scale field experiment was used to investigate the long-term effects of a single application of manure or inorganic fertiliser on microbial communities in the topsoil and subsoil of a cropping field in south-west Victoria. Poultry litter (20 t ha–1) and fertiliser (with equivalent total nutrients to the manure) was either surface broadcast or deep ripped into the subsoil before sowing in 2014. Soil samples were collected from the 0–10 and 25–40cm horizons in each treatment immediately after harvest of the third successive crop in January 2017. Next-generation sequencing of the 16S and ITS rRNA genes was used to characterise the bacterial and fungal communities in the soil. Amendment type and method of placement had a limited effect on soil microbial community structure and diversity, three years after treatments were applied. Fungal communities exhibited weak responses to the poultry litter and fertiliser in comparison to a nil control, but none of the treatments had any detectable effect on bacterial communities. Differences in structure and diversity of microbial communities were overwhelmingly due to their vertical distribution in the soil profile, and not the application of different amendments to the soil by deep ripping or surface broadcasting. The strength and timing of the soil disturbance, plant selection effects and farm management history likely contributed to the lack of measurable response in the soil microbial community.


2021 ◽  
Vol 9 (2) ◽  
pp. 362 ◽  
Author(s):  
Wen-Jing Gong ◽  
Zi-Fan Niu ◽  
Xing-Run Wang ◽  
He-Ping Zhao

The effects of long-term heavy metal contamination on the soil biological processes and soil microbial communities were investigated in a typical electroplating site in Zhangjiakou, China. It was found that the soil of the electroplating plant at Zhangjiakou were heavily polluted by Cr, Cr (VI), Ni, Cu, and Zn, with concentrations ranged from 112.8 to 9727.2, 0 to 1083.3, 15.6 to 58.4, 10.8 to 510.0 and 69.6 to 631.6 mg/kg, respectively. Soil urease and phosphatase activities were significantly inhibited by the heavy metal contamination, while the microbial biomass carbon content and the bacterial community richness were much lower compared to noncontaminated samples, suggesting that the long-term heavy metal contamination had a severe negative effect on soil microorganisms. Differently, soil dehydrogenase was promoted in the presence of Chromate compared to noncontaminated samples. This might be due to the enrichment of Sphingomonadaceae, which have been proven to be able to secrete dehydrogenase. The high-throughput sequencing of the 16S rRNA gene documented that Proteobacteria, Actinobacteria, and Chloroflexi were the dominant bacterial phyla in the contaminated soil. The Spearman correlation analysis showed the Methylobacillus, Muribaculaceae, and Sphingomonadaceae were able to tolerate high concentrations of Cr, Cr (VI), Cu, and Zn, indicating their potential in soil remediation.


2013 ◽  
Vol 10 (12) ◽  
pp. 7883-7895 ◽  
Author(s):  
A.-L. Agnalt ◽  
E. S. Grefsrud ◽  
E. Farestveit ◽  
M. Larsen ◽  
F. Keulder

Abstract. The ongoing warming and acidification of the world's oceans are expected to influence the marine ecosystems, including benthic marine resources. Ocean acidification may especially have an impact on calcifying organisms, and the European lobster (Homarus gammarus) is among those species at risk. A project was initiated in 2011 aiming to investigate long-term effects of ocean acidification on the early life-cycle of lobster under two temperatures. Larvae were exposed to pCO2 levels of ambient water (water intake at 90 m depth), medium 750 (pH = 7.79) and high 1200 μatm pCO2 (pH = 7.62) at temperatures 10 and 18 °C. The water parameters in ambient water did not stay stable and were very low towards the end of the experiment in the larval phase at 10 °C,with pH between 7.83 and 7.90. At 18°, pH in ambient treatment was even lower, between 7.76 and 7.83, i.e. close to medium pCO2 treatment. Long-term exposure lasted 5 months. At 18 °C the development from stage 1 to 4 lasted 14 to 16 days, as predicted under optimal water conditions. Growth was very slow at 10 °C and resulted in three larvae reaching stage 4 in high pCO2 treatment only. There were no clear effects of pCO2 treatment, on either carapace length or dry weight. However, deformities were observed in both larvae and juveniles. The proportion of larvae with deformities increased with increasing pCO2 exposure, independent of temperature. In the medium treatment about 23% were deformed, and in the high treatment about 43% were deformed. None of the larvae exposed to water of pH >7.9 developed deformities. Curled carapace was the most common deformity found in larvae raised in medium pCO2 treatment, irrespective of temperature, but damages in the tail fan occurred in addition to a bent rostrum. Curled carapace was the only deformity found in high pCO2 treatment at both temperatures. Occurrence of deformities after five months of exposure was 33 and 44% in juveniles raised in ambient and low pCO2 levels, respectively, and 21% in juveniles exposed to high pCO2. Deformed claws were most often found in ambient and medium treatment (56%, followed by stiff/twisted walking legs (39%) and puffy carapace (39%). In comparison, at high pCO2 levels 71% of the deformed juveniles had developed a puffy carapace. Overall, about half of the deformed juveniles from the ambient and medium pCO2 treatment displayed two or three different abnormalities; 70% had multiple deformities in the high pCO2 treatment. Some of the deformities in the juveniles may affect respiration (carapace), the ability to find food, or sexual partners (walking legs, claw and antenna), and ability to swim (tail-fan damages).


2016 ◽  
Vol 93 (3) ◽  
pp. fiw252 ◽  
Author(s):  
Olatz Garaiyurrebaso ◽  
Carlos Garbisu ◽  
Fernando Blanco ◽  
Anders Lanzén ◽  
Iker Martín ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document