scholarly journals Proteomic and Transcriptomic Analyses Indicate Reduced Biofilm-Forming Abilities in Cefiderocol-Resistant Klebsiella pneumoniae

2022 ◽  
Vol 12 ◽  
Author(s):  
Jinfeng Bao ◽  
Lu Xie ◽  
Yating Ma ◽  
Ran An ◽  
Bing Gu ◽  
...  

The advent of cefiderocol provides hope for the clinical treatment of multi-drug resistant gram-negative bacteria (GNB), especially those with carbapenem resistance. Resistance of Klebsiella pneumoniae to cefiderocol can be enhanced by acclimatization. In the present study, we collected cefiderocol resistant K. pneumoniae isolates during a 36-day acclimatization procedure while increasing the cefiderocol concentration in the culture medium. Strains were studied for changes in their biological characteristics using proteomics and transcriptomics. A decrease in biofilm formation ability was the main change observed among the induced isolates. Downregulation of genes involved in biofilm formation including hdeB, stpA, yhjQ, fba, bcsZ, uvrY, bcsE, bcsC, and ibpB were the main factors that reduced the biofilm formation ability. Moreover, downregulation of siderophore transporter proteins including the iron uptake system component efeO, the tonB-dependent receptor fecA, and ferric iron ABC transporter fbpA may be among the determining factors leading to cefiderocol resistance and promoting the reduction of biofilm formation ability of K. pneumoniae. This is the first study to investigate cefiderocol resistance based on comprehensive proteomic and transcriptomic analyses.

Author(s):  
Naveen Kumar Devanga Ragupathi ◽  
Dhiviya Prabaa Muthuirulandi Sethuvel ◽  
Hariharan Triplicane Dwarakanathan ◽  
Dhivya Murugan ◽  
Yamini Umashankar ◽  
...  

AbstractKlebsiella pneumoniae is one of the leading causes of nosocomial infections. Carbapenem-resistant (CR) K. pneumoniae are on the rise in India. The biofilm forming ability of K. pneumoniae further complicates patient management. There is still a knowledge gap on the association of biofilm formation with patient outcome and carbapenem susceptibility, which is investigated in the present study.K. pneumoniae isolates from patients admitted in critical care units with catheters and ventilators were included. K. pneumoniae (n = 72) were tested for antimicrobial susceptibility as recommended by CLSI 2019 and subjected to 96-well microtitre plate biofilm formation assay. Based on optical density at 570 nm isolates were graded as strong, moderate and weak biofilm formers. Subset of strong biofilm formers were subjected to whole genome sequencing and a core genome phylogenetic analysis in comparison with global isolates were performed. Biofilm formation was compared for an association with the carbapenem susceptibility and with patient outcome. Statistical significance, correlations and graphical representation were performed using SPSS v23.0.Phenotypic analyses showed a positive correlation between biofilm formation and carbapenem resistance. Planktonic cells observed to be susceptible in vitro exhibited higher MICs in biofilm structure. The biofilm forming ability had a significant association with the morbidity/mortality. Infections by stronger biofilm forming pathogens significantly (P<0.05) resulted in fewer ‘average days alive’ for the patient (3.33) in comparison to those negative for biofilms (11.33). Phylogenetic analysis including global isolates revealed the clear association of sequence types with genes for biofilm mechanism and carbapenem resistance. Carbapenemase genes were found specific to each clade. The known hypervirulent clone-ST23 with wcaG, magA, rmpA, rmpA2 and wzc with a lack of mutation for hyper-capsulation might be poor biofilm formers. Interestingly, ST15, ST16, ST307 and ST258 – reported global high-risk clones were wcaJ negative indicating the high potential of biofilm forming capacity. Genes wabG and treC for CPS, bcsA and pgaC for adhesins, luxS for quorum sensing were common in all clades in addition to genes for aerobactin (iutA), allantoin (allS), type I and III fimbriae (fimA, fimH, mrkD) and pili (pilQ, ecpA).This study is the first of its kind to compare genetic features of antimicrobial resistance with a spectrum covering most of the genetic factors for K. pneumoniae biofilm. These results highlight the importance of biofilm screening to effectively manage nosocomial infections by K. pneumoniae. Further, data obtained on epidemiology and associations of biofilm and antimicrobial resistance genetic factors will serve to enhance our understanding on biofilm mechanisms in K. pneumoniae.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Marcin Rozalski ◽  
Bartlomiej Micota ◽  
Beata Sadowska ◽  
Anna Stochmal ◽  
Dariusz Jedrejek ◽  
...  

New antimicrobial properties of products derived fromHumulus lupulusL. such as antiadherent and antibiofilm activities were evaluated. The growth of gram-positive but not gram-negative bacteria was inhibited to different extents by these compounds. An extract of hop cones containing 51% xanthohumol was slightly less active againstS. aureusstrains (MIC range 31.2–125.0 μg/mL) than pure xanthohumol (MIC range 15.6–62.5 μg/mL). The spent hop extract, free of xanthohumol, exhibited lower but still relevant activity (MIC range 1-2 mg/mL). There were positive coactions of hop cone, spent hop extracts, and xanthohumol with oxacillin against MSSA and with linezolid against MSSA and MRSA. Plant compounds in the culture medium at sub-MIC concentrations decreased the adhesion ofStaphylococcito abiotic surfaces, which in turn caused inhibition of biofilm formation. The rate of mature biofilm eradication by these products was significant. The spent hop extract at MIC reduced biofilm viability by 42.8%, the hop cone extract by 74.8%, and pure xanthohumol by 86.5%. When the hop cone extract or xanthohumol concentration was increased, almost complete biofilm eradication was achieved (97–99%). This study reveals the potent antibiofilm activity of hop-derived compounds for the first time.


2010 ◽  
Vol 59 (1) ◽  
pp. 67-69 ◽  
Author(s):  
ALICJA SĘKOWSKA ◽  
WALERIA HRYNIEWICZ ◽  
MAREK GNIADKOWSKI ◽  
ALEKSANDER DEPTUŁA ◽  
KRZYSZTOF KUSZA ◽  
...  

Carbapenem resistance in Gram-negative bacteria is a worldwide increasing and one of the most disturbing problems, given these antibiotics are drugs of choice in the treatment of infections caused by extended-spectrum-beta-lactamase producing strains. In this study the antibiotic susceptibility of metallo-beta-lactamase-positive and negative Klebsiella pneumoniae strains isolated from intensive care unit (ICU) patients was evaluated. The presence of genes encoding MBLs was determined with a commercial kit hyplex MBL ID (BAG HEALTH CARE). The MBL-producing isolates were the first K. pneumoniae isolates of this kind identified in Poland. It seems that methods for detecting MBLs in Enterobacteriaceae should be included in contemporary standards of microbiological diagnostics in the country.


Author(s):  
Zohreh Riahi Rad ◽  
Zahra Riahi Rad ◽  
Hossein Goudarzi ◽  
Mehdi Goudarzi ◽  
Hesam Alizade ◽  
...  

AbstractCarbapenems are employed to treat infections caused by Gram-negative bacteria including Klebsiella pneumoniae. This research is aimed to perform phenotypic detection of β-lactamases and molecular characterization of NDM-1 positive K. pneumoniae isolates. Another objective is to investigate NDM-1 producing K. pneumoniae among children in Iran. From 2019 to 2020, altogether 60 K. pneumoniae isolates were acquired from various patients in certain Iranian hospitals. Antimicrobial susceptibility testing was performed by disk diffusion and broth microdilution methods. In addition, mCIM and eCIM were used to confirm the production of carbapenemases and metallo-beta-lactamases (MBLs), respectively. Detection of resistance genes namely, blaNDM-1, blaIMP, blaVIM, blaKPC, blaOXA-48-like, blaCTX-M, blaSHV, blaTEM, and mcr-1 was performed by PCR and confirmed by DNA sequencing. Multilocus sequence typing (MLST) was employed to determine the molecular typing of the strains. According to the findings, the highest rate of carbapenem resistance was detected against doripenem 83.3% (50). Moreover, 31.7% (19) were resistant to colistin. Further to the above, altogether 80% (48) were carbapenemase-producing isolates and among them 46.7% (28) of the isolates were MBL and 33.3% (20) isolates were serine β-lactamase producer. According to the PCR results, 14 isolates produced blaNDM-1. Remarkably, four blaNDM-1 positive isolates were detected in children. In addition, these isolates were clonally related as determined by MLST (ST147, ST15). Altogether ten blaNDM-1 positive isolates were ST147 and four blaNDM-1 positive isolates were ST15. Based on the results, the emergence of NDM-producing K. pneumoniae among children is worrying and hence, it is necessary to develop a comprehensive program to control antibiotic resistance in the country.


1970 ◽  
Vol 29 (6) ◽  
Author(s):  
Hossein Ali Rahdar ◽  
Ebadallah Shiri Malekabad ◽  
Ali-Reza Dadashi ◽  
Elahe Takei ◽  
Masuod Keikha ◽  
...  

Background: Klebsiella pneumoniae is a Gram-negative enteric bacterium that causes nosocomial infections; this bacterium has survived from harsh condition using biofilm formation in hospital equipment and cause severe infection. In the other hand, the emergence and extension of carbapenem resistance burden among K. pneumonia producing biofilm is the current concern of public health services. There are controversial findings about this subject. The aim of this study was to evaluate the correlation between biofilm formation and resistance to carbapenem among clinical isolates of K. pneumoniae.Methods: A total of 160 K. pneumoniae isolates were collected from various infections of hospitalized patients. The Carba NP test and molecular methods were used for detection of carbapenem resistance isolates of K. pneumonia. Subsequently, the ability for biofilm production was performed from all isolates. Finally, Correlation of biofilm formation among carbapenem resistant isolates was calculated using χ2 and Fisher’s exact tests.Results: Among K. pneumoniae isolates 42.5% have carbapenemase activity by Carba NP test, while carbapenemase genes were detected in 35.6% of isolates in amplification assay. Moreover, there are 52.5% (n= 84) of all isolates were formed a strong biofilm, while 38.1% (n= 61) and 9.3% (n= 15) of isolates were middle and weak biofilm producer, respectively. Among carbapenem resistant cases (n= 68), there are 77.9% (n= 53) and 22% (n= 15) of isolates were reported as strong and middle biofilm producer, respectively. We see a significant correlation was seen between biofilm formation ability and carbapenem resistant isolates (p-value < 0.00001).Conclusion: The increase of carbapenem resistance burden in biofilm producing isolates of K. pneumoniae is considered as serious alert and the basic measures to combat this phenomenon is imperative.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S7-S7
Author(s):  
Alexander Lawandi ◽  
Gleice C Leite ◽  
Brigitte Lefebvre ◽  
Jean Longtin ◽  
Todd C Lee

Abstract Background Invasive infections with Carbapenemase Producing Enterobacterales are associated with considerable morbidity and mortality, in part due to the risk of inappropriate empiric therapy. Consequently, the rapid identification of carbapenem resistance is crucial to the management of these infections. We sought to evaluate possible reductions in turnaround time to identification of this resistance in blood cultures growing these organisms by applying rapid phenotypic test kits to growth from “hot chocolate” plates. Methods 30 blood cultures, spiked with carbapenem resistant Klebsiella pneumoniae isolates or susceptible controls, were inoculated onto chocolate agars that had pre-warmed at 37°C. These plates were incubated at 37ºC for 3.5 hours. The resulting minimal growth was then identified using MALDI-TOF and underwent rapid phenotypic testing using three commercially available products (β-lacta and β-carba, from Bio-Rad, Marnes-la-Coquette, France, and Carba-NP, from bioMérieux, Durham, NC). The time to identification of carbapenem resistance using this method was then compared to that of the conventional laboratory workup. Results The identification was 100% accurate to the species level using MALDI-TOF paired to the 3.5 hour growth on the “hot choocolate” plates. The β-lacta kit identified resistance to 3rd generation cephalosporins for all ESBL and carbapenemase producing Klebsiella pneumoniae isolates, while the β-carba and Carba-NP kits identified carbapenem resistance only in the carbapenemase producers. The sensitivity of all assays was 100% (95% CI 0.87–1.0) and the specificity of carbapenemase detection was 100% (97.5% one-sided CI 0.4–1.0). The corresponding sensitivities and specificities of direct disc diffusion for ertapenem resistance detection were 88.5% (95% CI 0.70–0.98) and 100% (95%CI 0.40–1.0) respectively. The turnaround time for the rapid kits coupled to the “hot chocolate” plates was 4.25 to 5.1 hours as compared to 16 hours for the conventional workup. Conclusion Rapid phenotypic tests performed after inoculation of “hot chocolate” plates are highly sensitive for the presence of carbapenemase production and can be incorporated into the laboratory workflow for Klebisella pneumoniae with important reductions in turnaround time. Disclosures All Authors: No reported disclosures


2020 ◽  
Vol 41 (S1) ◽  
pp. s356-s357
Author(s):  
Tomasz Kasperski ◽  
Biophage Pharma S.A. Kraków ◽  
Agnieszka Chmielarczyk ◽  
Monika Pomorska-Wesolowska ◽  
Dorota Romaniszyn ◽  
...  

Background:Acinetobacter spp are gram-negative bacteria that have emerged as a leading cause of hospital-associated infections, most often in the intensive care unit (ICU) setting. This is particularly important in Poland, where the prevalence of A. baumannii in various types of infections, including bloodstream infection (BSI), pneumonia, skin and soft-tissue infection (SSTI), and urinary tract infection (UTI) is higher than in neighboring countries. Recently, other Acinetobacter spp, including A. lwoffii or A. ursingii, have been found to be clinically relevant. In Poland, we have also observed a very rapid increase in antimicrobial resistance, significantly faster for A. baumannii than for other nosocomial pathogens. Methods: A study was conducted in 12 southern Polish hospitals, including 3 ICUs, from January 1 to December 31, 2018. Only adult hospitalized patients were included. Strains were identified using the MALDI-TOF method. Carbapenem resistance was determined using the minimum inhibitory concentration (MIC). Results: During the study, 194 strains belonging to the Acinetobacter genus were isolated. A. baumannii was the dominant species, 88.1% (n = 171), and 23 isolates (11.9%) were other Acinetobacter spp: A. ursingii (n = 5), A. lwofii (n = 4), A. haemolyticus (n = 4), A. junii (n = 3), A. radioresistens (n = 2), A. bereziniae (n = 2), and A. johnsonii (n = 2). Moreover, 15 Acinetobacter strains were collected from ICUs. The most Acinetobacter strains were isolated from SSTIs (n = 115) from non-ICU settings. Non–A. baumannii strains were also most frequently isolated from SSTIs; they constituted 11.3% of all Acinetobacter strains from this type of infection (n = 13). The total Acinetobacter prevalence was 2.6%, whereas the prevalence in the ICU setting was 7%. Acinetobacter prevalence in SSTIs was 10.4%. In pneumonia, Acinetobacter prevalence was 18.6% for ICUs (n = 13) and 2.7% for non-ICUs (n = 46). Strains from UTIs were isolated only with the non-ICU setting, and their prevalence was 0.7% (n = 14). More than half of the tested strains (52.1%) were resistant to carbapenems, but all non–A. baumannii strains were susceptible. The highest resistance to carbapenems was among strains from pneumonia cases in ICUs (58.3%) and resistance among all strains isolated from ICU was 50%. However, even higher resistance was noted among SSTI strains from non-ICUs (61.7%). Conclusions: Increasingly, more than A. baumannii, other species among Acinetobacter strains are isolated from patients hospitalized in Polish hospitals. To assess the significance of non–A. baumannii spp in clinical settings, precise species identification is needed. Therefore, the diagnostic methods used must be improved. Carbapenem-resistant A. baumannii infections are the biggest problem in pneumonia patients in ICUs and in SSTI patients in other hospital departments. Carbapenem resistance occurs in a very high percentage of A. baumannii strains; among non–A. baumannii strains it is not yet a therapeutic problem.Funding: NoneDisclosures: None


2021 ◽  
Vol 152 ◽  
pp. 104743
Author(s):  
Renchi Fang ◽  
Haiyang Liu ◽  
Xiucai Zhang ◽  
Guofeng Dong ◽  
Jiahui Li ◽  
...  

2014 ◽  
Vol 77 ◽  
pp. 89-99 ◽  
Author(s):  
Kuang-Ming Chen ◽  
Ming-Ko Chiang ◽  
Meilin Wang ◽  
Han-Chen Ho ◽  
Min-Chi Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document