scholarly journals Animal Models of Anxiety and Depression: Incorporating the Underlying Mechanisms of Sex Differences in Macroglia Biology

2021 ◽  
Vol 15 ◽  
Author(s):  
Amy J. Wegener ◽  
Gretchen N. Neigh

Animal models have been utilized to explore the mechanisms by which mood disorders develop. Ethologically based stress paradigms are used to induce behavioral responses consistent with those observed in humans suffering from anxiety and depression. While mood disorders are more often diagnosed in women, animal studies are more likely to be carried out in male rodents. However, understanding the mechanisms behind anxiety- and depressive-like behaviors in both sexes is necessary to increase the predictive and construct validity of the models and identify therapeutic targets. To understand sex differences following stress, we must consider how all cell types within the central nervous system are influenced by the neuroendocrine system. This review article discusses the effects of stress and sex steroids on the macroglia: astrocytes and oligodendrocytes. Glia are involved in shaping the synapse through the regulation of neurotransmitter levels and energy resources, making them essential contributors to neural dynamics following stress. As the role of glia in neuromodulation has become more apparent, studies exploring the mechanisms by which glia are altered by stress and steroids will provide insight into sex differences in animal models. These insights will facilitate the optimization of animal models of psychiatric disorders and development of future therapeutic targets.

2013 ◽  
Vol 3 (2) ◽  
pp. 20120067 ◽  
Author(s):  
Timothy D. Butters ◽  
Oleg V. Aslanidi ◽  
Jichao Zhao ◽  
Bruce Smaill ◽  
Henggui Zhang

Sheep are often used as animal models for experimental studies into the underlying mechanisms of cardiac arrhythmias. Previous studies have shown that biophysically detailed computer models of the heart provide a powerful alternative to experimental animal models for underpinning such mechanisms. In this study, we have developed a family of mathematical models for the electrical action potentials of various sheep atrial cell types. The developed cell models were then incorporated into a three-dimensional anatomical model of the sheep atria, which was recently reconstructed and segmented based on anatomical features within different regions. This created a novel biophysically detailed computational model of the three-dimensional sheep atria. Using the model, we then investigated the mechanisms by which paroxysmal rapid focal activity in the pulmonary veins can transit to sustained atrial fibrillation. It was found that the anisotropic property of the atria arising from the fibre structure plays an important role in facilitating the development of fibrillatory atrial excitation waves, and the electrical heterogeneity plays an important role in its initiation.


2019 ◽  
Vol 115 (12) ◽  
pp. 1732-1756 ◽  
Author(s):  
Francesca Fasolo ◽  
Karina Di Gregoli ◽  
Lars Maegdefessel ◽  
Jason L Johnson

Abstract Atherosclerosis underlies the predominant number of cardiovascular diseases and remains a leading cause of morbidity and mortality worldwide. The development, progression and formation of clinically relevant atherosclerotic plaques involves the interaction of distinct and over-lapping mechanisms which dictate the roles and actions of multiple resident and recruited cell types including endothelial cells, vascular smooth muscle cells, and monocyte/macrophages. The discovery of non-coding RNAs (ncRNAs) including microRNAs, long non-coding RNAs, and circular RNAs, and their identification as key mechanistic regulators of mRNA and protein expression has piqued interest in their potential contribution to atherosclerosis. Accruing evidence has revealed ncRNAs regulate pivotal cellular and molecular processes during all stages of atherosclerosis including cell invasion, growth, and survival; cellular uptake and efflux of lipids, expression and release of pro- and anti-inflammatory intermediaries, and proteolytic balance. The expression profile of ncRNAs within atherosclerotic lesions and the circulation have been determined with the aim of identifying individual or clusters of ncRNAs which may be viable therapeutic targets alongside deployment as biomarkers of atherosclerotic plaque progression. Consequently, numerous in vivo studies have been convened to determine the effects of moderating the function or expression of select ncRNAs in well-characterized animal models of atherosclerosis. Together, clinicopathological findings and studies in animal models have elucidated the multifaceted and frequently divergent effects ncRNAs impose both directly and indirectly on the formation and progression of atherosclerosis. From these findings’ potential novel therapeutic targets and strategies have been discovered which may pave the way for further translational studies and possibly taken forward for clinical application.


2006 ◽  
Vol 51 (3) ◽  
pp. 578-586 ◽  
Author(s):  
Anna Wesołowska ◽  
Agnieszka Nikiforuk ◽  
Katarzyna Stachowicz ◽  
Ewa Tatarczyńska

2004 ◽  
Vol 29 (7) ◽  
pp. 1321-1330 ◽  
Author(s):  
Stephanie C Dulawa ◽  
Kerri A Holick ◽  
Brigitta Gundersen ◽  
Rene Hen

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Tomohiro Aoki ◽  
Masaki Nishimura

Cerebral aneurysms (CAs) have a high prevalence and can cause a lethal subarachnoid hemorrhage. Currently, CAs can only be treated with invasive surgical procedures. To unravel the underlying mechanisms of CA formation and to develop new therapeutic drugs for CAs, animal models of CA have been established, modified, and analyzed. Experimental findings from these models have clarified some of the potential mechanisms of CA formation, especially the relationship between hemodynamic stress and chronic inflammation. Increased hemodynamic stress acting at the site of bifurcation of cerebral arteries triggers an inflammatory response mediated by various proinflammatory molecules in arterial walls, inducing pathological changes in the models similar to those observed in the walls of human CAs. Findings from animal studies have provided new insights into CA formation and may contribute to the development of new therapeutic drugs for CAs.


2008 ◽  
Vol 592 (1-3) ◽  
pp. 96-102 ◽  
Author(s):  
Anton Y. Bespalov ◽  
Marcel M. van Gaalen ◽  
Irina A. Sukhotina ◽  
Karsten Wicke ◽  
Mario Mezler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document