scholarly journals Effects of Electrical Stimulation of NAc Afferents on VP Neurons’ Tonic Firing

2020 ◽  
Vol 14 ◽  
Author(s):  
Martin Clark

Afferents from the nucleus accumbens (NAc) are a major source of input into the ventral pallidum (VP). Research reveals that these afferents are GABAergic, however, stimulation of these afferents induces both excitatory and inhibitory responses within the VP. These are likely to be partially mediated by enkephalin and substance P (SP), which are also released by these afferents, and are known to modulate VP neurons. However, less is known about the potentially differential effects stimulation of these afferents has on subpopulations of neurons within the VP and the cellular mechanisms by which they exert their effects. The current study aimed to research this further using brain slices containing the VP, stimulation of the NAc afferents, and multi-electrode array (MEA) recordings of their VP targets. Stimulation of the NAc afferents induced a pause in the tonic firing in 58% of the neurons studied in the VP, while 42% were not affected. Measures used to reveal the electrophysiological difference between these groups found no significant differences in firing frequency, coefficient of variation, and spike half-width. There were however significant differences in the pause duration between neurons in the dorsal and ventral VP, with stimulation of NAc afferents producing a significantly longer pause (0.48 ± 0.06 s) in tonic firing in dorsal VP neurons, compared to neurons in the ventral VP (0.21 ± 0.09 s). Pauses in the tonic firing of VP neurons, as a result of NAc afferent stimulation, were found to be largely mediated by GABAA receptors, as the application of picrotoxin significantly reduced their duration. Opioid agonists and antagonists were found to have no significant effects on the pause in tonic activity induced by NAc afferent stimulation. However, NK-1 receptor antagonists caused significant decreases in the pause duration, suggesting that SP may contribute to the inhibitory effect of NAc afferent stimulation via activation of NK-1 receptors.

2013 ◽  
Vol 110 (8) ◽  
pp. 1765-1781 ◽  
Author(s):  
Wenjie Ren ◽  
Takaki Kiritoshi ◽  
Stéphanie Grégoire ◽  
Guangchen Ji ◽  
Remo Guerrini ◽  
...  

Amygdala plasticity is an important contributor to the emotional-affective dimension of pain. Recently discovered neuropeptide S (NPS) has anxiolytic properties through actions in the amygdala. Behavioral data also suggest antinociceptive effects of centrally acting NPS, but site and mechanism of action remain to be determined. This is the first electrophysiological analysis of pain-related NPS effects in the brain. We combined whole cell patch-clamp recordings in brain slices and behavioral assays to test the hypothesis that NPS activates synaptic inhibition of amygdala output to suppress pain behavior in an arthritis pain model. Recordings of neurons in the laterocapsular division of the central nucleus (CeLC), which serves pain-related amygdala output functions, show that NPS inhibited the enhanced excitatory drive [monosynaptic excitatory postsynaptic currents (EPSCs)] from the basolateral amygdala (BLA) in the pain state. As shown by miniature EPSC analysis, the inhibitory effect of NPS did not involve direct postsynaptic action on CeLC neurons but rather a presynaptic, action potential-dependent network mechanism. Indeed, NPS increased external capsule (EC)-driven synaptic inhibition of CeLC neurons through PKA-dependent facilitatory postsynaptic action on a cluster of inhibitory intercalated (ITC) cells. NPS had no effect on BLA neurons. High-frequency stimulation (HFS) of excitatory EC inputs to ITC cells also inhibited synaptic activation of CeLC neurons, providing further evidence that ITC activation can control amygdala output. The cellular mechanisms by which EC-driven synaptic inhibition controls CeLC output remain to be determined. Administration of NPS into ITC, but not CeLC, also inhibited vocalizations and anxiety-like behavior in arthritic rats. A selective NPS receptor antagonist ([d-Cys(tBu)5]NPS) blocked electrophysiological and behavioral effects of NPS. Thus NPS is a novel tool to control amygdala output and pain-related affective behaviors through a direct action on inhibitory ITC cells.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A27-A28
Author(s):  
Roberto De Luca ◽  
Stefano Nardone ◽  
Lin Zhu ◽  
Elda Arrigoni

Abstract Introduction The ventrolateral preoptic (VLPO) nucleus is a key area involved in the initiation and maintenance of sleep. During wakefulness, sleep-promoting galanin neurons in the VLPO are directly inhibited by arousal signals including noradrenaline and acetylcholine. We have found that while these neurotransmitters directly inhibit VLPO galanin neurons, they also activate GABAergic neurons in the VLPO that do not express galanin. We propose that when activated by monoaminergic and cholinergic inputs, these local VLPO GABAergic neurons provide an additional inhibition of the VLPO galanin sleep-promoting neurons. We tested this model in brain slices in mice. Methods We studied VLPO galanin neurons in mouse brain slices using patch-clamp recordings. We recorded from fluorescently labeled VLPO galanin neurons following the injection of a cre-dependent AAV encoding for mCherry, into the VLPO of Gal-cre mice. For the optogenetic studies we expressed channelrhodopsin-2 (ChR-2) in VLPO VGAT neurons and mCherry in galanin neurons by injecting a flp-dependent and a cre-dependent AAV encoding respectively for ChR2 and mCherry into the VLPO of VGAT-flp::Gal-cre mice. We photo-stimulated local GABAergic neurons and recorded from labeled VLPO galanin neurons. Noradrenaline, carbachol and receptor antagonists were bath-applied. Results Noradrenaline and carbachol inhibited VLPO galanin neurons by alpha-2 and muscarinic receptors and these effects were maintained in the presence of tetrodotoxin (TTX) indicating, as previously proposed, a direct inhibitory effect of noradrenaline and carbachol on VLPO galanin neurons. In addition, both noradrenaline and carbachol increased the frequency of spontaneous inhibitory post-synaptic currents (sIPSCs) of VLPO galanin neurons, suggesting an additional inhibitory action on VLPO galanin neurons. Finally, optogenetic stimulation of local VLPO GABAergic neurons produced short latency, TTX-resistant, opto-evoked IPSCs in VLPO galanin neurons. Both noradrenaline and carbachol increased the amplitude of these opto-evoked IPSCs by the activation of alpha-1 and muscarinic receptors. Conclusion Our results demonstrate that noradrenaline and acetylcholine inhibit VLPO galanin neurons directly and indirectly. Both noradrenaline and acetylcholine increase GABAergic afferent inputs to VLPO galanin neurons by activating local GABAergic neurons. We propose that during wakefulness this feedforward inhibition provides additional inhibition of VLPO galanin sleep-promoting neurons. Support (if any) NS091126 and HL149630


2015 ◽  
Vol 113 (7) ◽  
pp. 2879-2888 ◽  
Author(s):  
Cory A. Massey ◽  
Kimberly E. Iceman ◽  
Sara L. Johansen ◽  
Yuanming Wu ◽  
Michael B. Harris ◽  
...  

Serotonin (5-hydroxytryptamine, 5-HT) neurons from the mouse and rat rostral medulla are stimulated by increased CO2 when studied in culture or brain slices. However, the response of 5-HT neurons has been variable when animals are exposed to hypercapnia in vivo. Here we examined whether halogenated inhalational anesthetics, which activate TWIK-related acid-sensitive K+ (TASK) channels, could mask an effect of CO2 on 5-HT neurons. During in vivo plethysmography in mice, isoflurane (1%) markedly reduced the hypercapnic ventilatory response (HCVR) by 78–96% depending upon mouse strain and ambient temperature. In a perfused rat brain stem preparation, isoflurane (1%) reduced or silenced spontaneous firing of medullary 5-HT neurons in situ and abolished their responses to elevated perfusate Pco2. In dissociated cell cultures, isoflurane (1%) hyperpolarized 5-HT neurons by 6.52 ± 3.94 mV and inhibited spontaneous firing. A subsequent decrease in pH from 7.4 to 7.2 depolarized neurons by 4.07 ± 2.10 mV, but that was insufficient to reach threshold for firing. Depolarizing current restored baseline firing and the firing frequency response to acidosis, indicating that isoflurane did not block the underlying mechanisms mediating chemosensitivity. These results demonstrate that isoflurane masks 5-HT neuron chemosensitivity in vitro and in situ and markedly decreases the HCVR in vivo. The use of this class of anesthetic has a particularly potent inhibitory effect on chemosensitivity of 5-HT neurons.


2007 ◽  
Vol 98 (2) ◽  
pp. 581-593 ◽  
Author(s):  
Zhi Liu ◽  
Yo Otsu ◽  
Cristina Vasuta ◽  
Hiroyuki Nawa ◽  
Timothy H. Murphy

Stimulation of presynaptic nicotinic acetylcholine receptors (nAChRs) increases the frequency of miniature excitatory synaptic activity (mEPSCs) to a point where they can promote cell firing in hippocampal CA3 neurons. We have evaluated whether nicotine regulation of miniature synaptic activity can be extended to inhibitory transmission onto striatal medium spiny projection neurons (MSNs) in acute brain slices. Bath application of micromolar nicotine typically induced 12-fold increases in the frequency of miniature inhibitory synaptic currents (mIPSCs). Little effect was observed on the amplitude of mIPSCs or mEPSCs under these conditions. Nicotine stimulation of mIPSCs was dependent on entry of extracellular calcium because removal of calcium from perfusate was able to block its action. To assess the potential physiological significance of the nicotine-stimulated increase in mIPSC frequency, we also examined the nicotine effect on evoked IPSCs (eIPSCs). eIPSCs were markedly attenuated by nicotine. This effect could be attributed to two potential mechanisms: transmitter depletion due to extremely high mIPSC rates and/or a reduction in presynaptic excitability associated with nicotinic depolarization. Treatment with low concentrations of K+ was able to in part mimic nicotine's stimulatory effect on mIPSCs and inhibitory effect on eIPSCs. Current-clamp recordings confirmed a direct depolarizing action of nicotine that could dampen eIPSC activity leading to a switch to striatal inhibitory synaptic transmission mediated by tonic mIPSCs.


1994 ◽  
Vol 141 (3) ◽  
pp. 491-496 ◽  
Author(s):  
J-S Lee ◽  
W J Silvia

Abstract Four experiments were conducted to determine whether phospholipase (PL) A2 mediates the stimulatory effect of oxytocin on the release of prostaglandin (PG) F2α from ovine endometrial tissue. Caruncular endometrial tissue was collected from ovariectomized ewes on the day after a steroid replacement protocol had been completed. The replacement protocol consisted of progesterone for 10 days (12 mg/day) followed by oestradiol on days 10 and 11 (100 μg/day) and had been shown previously to provide endometrial tissue that would release PGF2α in response to oxytocin in vitro. In experiment 1, oxytocin (10−7 m) and melittin (1·76 × 10−6 m; a stimulator of PLA2) stimulated release of PGF2α from tissue explants (P<0·05). Aristolochic acid (10−4 m; an inhibitor of PLA2) decreased oxytocin-and melittin-induced release of PGF2α by 77% and 71% respectively (P<0·05). Experiment 2 was conducted to establish the minimum inhibitory dose of aristolochic acid. Basal release of PGF2α was inhibited at 10−5 m aristolochic acid, but 10−4 m was required to block the stimulatory effect of oxytocin. Experiment 3 was carried out to identify the precise intracellular locus at which aristolochic acid was exerting its effect. Oxytocin (10−7 m), AlF4− (5 × 10−2m NaF, 10−5m AlCl3), melittin (1·76 × 10−6 m) and arachidonic acid (AA; 20 μg/ml) stimulated release of PGF2α (P<0·05). Aristolochic acid (10−4 m) blocked the release of PGF2α stimulated by oxytocin, AlF4− or melittin by >80% (P<0·05). However, aristolochic acid reduced AA-induced release by only 22% (P=0·09). Thus, aristolochic acid blocked responsiveness to stimulatory agents that act on, or proximal to, PLA2 but not responsiveness to AA whose stimulatory effect is exerted distal to PLA2. Experiment 4 was intended to establish the specificity of the inhibitory effect of aristolochic acid. This was accomplished by examining the effect of aristolochic acid on the ability of oxytocin to stimulate activity of PLC. Aristolochic acid (10−4 m) increased basal PLC activity by 29% (P<0·05) but had no effect on the activity induced by oxytocin (P>0·1). Thus, aristolochic acid blocked the ability of oxytocin to stimulate PGF2α release (experiments 1–3) but not its ability to stimulate the activity of PLC (experiment 4). The effects of melittin and aristolochic acid are consistent with the hypothesis that the stimulatory effect of oxytocin on PGF2α release from ovine endometrial tissue is mediated through PLA2. Journal of Endocrinology (1994) 141, 491–496


2021 ◽  
Vol 2 (2) ◽  
pp. 100442
Author(s):  
Kevin M. Manz ◽  
Justin K. Siemann ◽  
Douglas G. McMahon ◽  
Brad A. Grueter

1995 ◽  
Vol 67 (4) ◽  
pp. 399-402
Author(s):  
Kaoru Kondo ◽  
Hitoshi Hashimoto ◽  
Kazuko Sakata ◽  
Hiroshi Saga ◽  
Jun-ichi Kitanaka ◽  
...  

1996 ◽  
Vol 270 (2) ◽  
pp. H620-H627 ◽  
Author(s):  
T. Asai ◽  
L. M. Shuba ◽  
D. J. Pelzer ◽  
T. F. McDonald

Active and inactive phorbol esters were applied to guinea pig ventricular myocytes to study the responses of L-type Ca2+ (ICa,L) and L-type Na+ (INa,L) currents. Phorbol 12-myristate 13-acetate (PMA) (10-100 rM) never stimulated ICa,L or INa,L and frequently depressed them by 5-30% in a voltage-independent manner. However, the phorbol ester consistently activated delayed-rectifying K+ (IK) and Cl- currents. The inhibition of ICa,L occurred approximately 3 times faster than comonitored stimulation of IK, and ICa,L and INa,L were unaffected by two interventions that suppressed IK stimulation [pretreatment with 50 microM 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) and dialysis with pCa 11 versus standard pCa 9 solution]. Inactive phorbol esters 4 alpha-phorbol 12,13-didecanoate (alpha-PDD) and 4 alpha-phorbol had little effect on IK, but alpha-PDD had a PMA-like inhibitory effect on Ca2+ channel currents. We conclude that, unlike the stimulation of IK by PMA, inhibition of Ca2+ channel current by phorbol esters is a protein kinase C-independent action.


2005 ◽  
Vol 288 (6) ◽  
pp. G1195-G1198 ◽  
Author(s):  
Shi Liu ◽  
Lijie Wang ◽  
J. D. Z. Chen

Gastric electrical stimulation (GES) has been shown to alter motor and sensory functions of the stomach. However, its effects on other organs of the gut have rarely been investigated. The study was performed in 12 dogs implanted with two pairs of electrodes, one on the serosa of the stomach and the other on the colon. The study was composed of two experiments. Experiment 1 was designed to study the effects of GES on rectal tone and compliance in nine dogs compared with colonic electrical stimulation (CES). Rectal tone and compliance were assessed before and after GES or CES. Experiment 2 was performed to study the involvement of sympathetic pathway in 8 of the 12 dogs. The rectal tone was recorded for 30–40 min at baseline and 20 min after intravenous guanethidine. GES or CES was given for 20 min 20 min after the initiation of the infusion. It was found that both GES and CES reduced rectal tone with comparable potency. Rectal compliance was altered neither with GES, nor with CES. The inhibitory effect of GES but not CES on rectal tone was abolished by an adrenergic blockade, guanethidine. GES inhibited rectal tone with a comparable potency with CES but did not alter rectal compliance. The inhibitory effect of GES on rectal tone is mediated by the sympathetic pathway. It should be noted that electrical stimulation of one organ of the gut may have a beneficial or adverse effect on another organ of the gut.


Sign in / Sign up

Export Citation Format

Share Document