scholarly journals Intrinsic Mechanisms Regulating Neuronal Migration in the Postnatal Brain

2021 ◽  
Vol 14 ◽  
Author(s):  
Cedric Bressan ◽  
Armen Saghatelyan

Neuronal migration is a fundamental brain development process that allows cells to move from their birthplaces to their sites of integration. Although neuronal migration largely ceases during embryonic and early postnatal development, neuroblasts continue to be produced and to migrate to a few regions of the adult brain such as the dentate gyrus and the subventricular zone (SVZ). In the SVZ, a large number of neuroblasts migrate into the olfactory bulb (OB) along the rostral migratory stream (RMS). Neuroblasts migrate in chains in a tightly organized micro-environment composed of astrocytes that ensheath the chains of neuroblasts and regulate their migration; the blood vessels that are used by neuroblasts as a physical scaffold and a source of molecular factors; and axons that modulate neuronal migration. In addition to diverse sets of extrinsic micro-environmental cues, long-distance neuronal migration involves a number of intrinsic mechanisms, including membrane and cytoskeleton remodeling, Ca2+ signaling, mitochondria dynamics, energy consumption, and autophagy. All these mechanisms are required to cope with the different micro-environment signals and maintain cellular homeostasis in order to sustain the proper dynamics of migrating neuroblasts and their faithful arrival in the target regions. Neuroblasts in the postnatal brain not only migrate into the OB but may also deviate from their normal path to migrate to a site of injury induced by a stroke or by certain neurodegenerative disorders. In this review, we will focus on the intrinsic mechanisms that regulate long-distance neuroblast migration in the adult brain and on how these pathways may be modulated to control the recruitment of neuroblasts to damaged/diseased brain areas.

2021 ◽  
Vol 22 (21) ◽  
pp. 11506
Author(s):  
Marcela Martončíková ◽  
Anna Alexovič Matiašová ◽  
Juraj Ševc ◽  
Enikő Račeková

Neural precursors originating in the subventricular zone (SVZ), the largest neurogenic region of the adult brain, migrate several millimeters along a restricted migratory pathway, the rostral migratory stream (RMS), toward the olfactory bulb (OB), where they differentiate into interneurons and integrate into the local neuronal circuits. Migration of SVZ-derived neuroblasts in the adult brain differs in many aspects from that in the embryonic period. Unlike in that period, postnatally-generated neuroblasts in the SVZ are able to divide during migration along the RMS, as well as they migrate independently of radial glia. The homophilic mode of migration, i.e., using each other to move, is typical for neuroblast movement in the RMS. In addition, it has recently been demonstrated that specifically-arranged blood vessels navigate SVZ-derived neuroblasts to the OB and provide signals which promote migration. Here we review the development of vasculature in the presumptive neurogenic region of the rodent brain during the embryonic period as well as the development of the vascular scaffold guiding neuroblast migration in the postnatal period, and the significance of blood vessel reorganization during the early postnatal period for proper migration of RMS neuroblasts in adulthood.


PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0151589 ◽  
Author(s):  
Kun Zhou ◽  
Sepideh Motamed ◽  
George A. Thouas ◽  
Claude C. Bernard ◽  
Dan Li ◽  
...  

Author(s):  
Ramon Guirado ◽  
Eero Castrén

Neuronal networks are refined through an activity-dependent competition during critical periods of early postnatal development. Recent studies have shown that critical period plasticity is influenced by a number of environmental factors, including drugs that are widely used for the treatment of brain disorders. These findings suggest a new paradigm, where pharmacological treatments can be used to open critical period–like plasticity in the adult brain. The plastic networks can then be modified through rehabilitation or psychotherapy to rewire those abnormally wired during development. This kind of combination of pharmacotherapy with physical or psychological rehabilitation may open a new opportunity for a more efficient recovery of a number of neurological and neuropsychiatric disorders.


2018 ◽  
Vol 29 (8) ◽  
pp. 3590-3604 ◽  
Author(s):  
Oressia Zalucki ◽  
Lachlan Harris ◽  
Tracey J Harvey ◽  
Danyon Harkins ◽  
Jocelyn Widagdo ◽  
...  

Abstract Understanding the migration of newborn neurons within the brain presents a major challenge in contemporary biology. Neuronal migration is widespread within the developing brain but is also important within the adult brain. For instance, stem cells within the ventricular–subventricular zone (V-SVZ) and the subgranular zone of dentate gyrus of the adult rodent brain produce neuroblasts that migrate to the olfactory bulb and granule cell layer of the dentate gyrus, respectively, where they regulate key brain functions including innate olfactory responses, learning, and memory. Critically, our understanding of the factors mediating neuroblast migration remains limited. The transcription factor nuclear factor I X (NFIX) has previously been implicated in embryonic cortical development. Here, we employed conditional ablation of Nfix from the adult mouse brain and demonstrated that the removal of this gene from either neural stem and progenitor cells, or neuroblasts, within the V-SVZ culminated in neuroblast migration defects. Mechanistically, we identified aberrant neuroblast branching, due in part to increased expression of the guanylyl cyclase natriuretic peptide receptor 2 (Npr2), as a factor contributing to abnormal migration in Nfix-deficient adult mice. Collectively, these data provide new insights into how neuroblast migration is regulated at a transcriptional level within the adult brain.


2017 ◽  
Vol 216 (8) ◽  
pp. 2443-2461 ◽  
Author(s):  
Richard Belvindrah ◽  
Kathiresan Natarajan ◽  
Preety Shabajee ◽  
Elodie Bruel-Jungerman ◽  
Jennifer Bernard ◽  
...  

Brain development involves extensive migration of neurons. Microtubules (MTs) are key cellular effectors of neuronal displacement that are assembled from α/β-tubulin heterodimers. Mutation of the α-tubulin isotype TUBA1A is associated with cortical malformations in humans. In this study, we provide detailed in vivo and in vitro analyses of Tuba1a mutants. In mice carrying a Tuba1a missense mutation (S140G), neurons accumulate, and glial cells are dispersed along the rostral migratory stream in postnatal and adult brains. Live imaging of Tuba1a-mutant neurons revealed slowed migration and increased neuronal branching, which correlated with directionality alterations and perturbed nucleus–centrosome (N–C) coupling. Tuba1a mutation led to increased straightness of newly polymerized MTs, and structural modeling data suggest a conformational change in the α/β-tubulin heterodimer. We show that Tuba8, another α-tubulin isotype previously associated with cortical malformations, has altered function compared with Tuba1a. Our work shows that Tuba1a plays an essential, noncompensated role in neuronal saltatory migration in vivo and highlights the importance of MT flexibility in N–C coupling and neuronal-branching regulation during neuronal migration.


2017 ◽  
Vol 114 (10) ◽  
pp. E2006-E2015 ◽  
Author(s):  
János Hanics ◽  
Edit Szodorai ◽  
Giuseppe Tortoriello ◽  
Katarzyna Malenczyk ◽  
Erik Keimpema ◽  
...  

The rostral migratory stream (RMS) is viewed as a glia-enriched conduit of forward-migrating neuroblasts in which chemorepulsive signals control the pace of forward migration. Here we demonstrate the existence of a scaffold of neurons that receive synaptic inputs within the rat, mouse, and human fetal RMS equivalents. These neurons express secretagogin, a Ca2+-sensor protein, to execute an annexin V-dependent externalization of matrix metalloprotease-2 (MMP-2) for reconfiguring the extracellular matrix locally. Mouse genetics combined with pharmacological probing in vivo and in vitro demonstrate that MMP-2 externalization occurs on demand and that its loss slows neuroblast migration. Loss of function is particularly remarkable upon injury to the olfactory bulb. Cumulatively, we identify a signaling cascade that provokes structural remodeling of the RMS through recruitment of MMP-2 by a previously unrecognized neuronal constituent. Given the life-long presence of secretagogin-containing neurons in human, this mechanism might be exploited for therapeutic benefit in rescue strategies.


Sign in / Sign up

Export Citation Format

Share Document