scholarly journals TMAO Aggregates Neurological Damage Following Ischemic Stroke by Promoting Reactive Astrocytosis and Glial Scar Formation via the Smurf2/ALK5 Axis

2021 ◽  
Vol 15 ◽  
Author(s):  
Haibo Su ◽  
Shaoping Fan ◽  
Lingqiong Zhang ◽  
Hui Qi

Ischemic stroke has been reported to cause significant changes to memory, thinking, and behavior. Intriguingly, recently reported studies have indicated the association of Trimethylamine N-oxide (TMAO) with the acute phase of ischemic stroke. However, the comprehensive underlying mechanism remained unknown. The objective of the present study was to investigate the association between TMAO and recovery of neurological function after ischemic stroke. For this purpose, a middle cerebral artery occlusion/reperfusion (MCAO/R) rat model was established and treated with TMAO or/and sh-ALK5, followed by the neurological function evaluation. Behaviors of rats were observed through staircase and cylinder tests. Moreover, the expression of Smurf2 and ALK5 was detected by immunohistochemistry while expression of GFAP, Neurocan, and Phosphacan in brain tissues was determined by immunofluorescence. Thereafter, gain- and loss-of-function assays in astrocytes, the proliferation, viability, and migration were evaluated by the EdU, CCK-8, and Transwell assays. Besides, Smurf2 mRNA expression was determined by the RT-qPCR, whereas, Smurf2, ALK5, GFAP, Neurocan, and Phosphacan expression was evaluated by the Western blotting. Finally, the interaction of Smurf2 with ALK5 and ALK5 ubiquitination was assessed by the co-immunoprecipitation. Notably, our results showed that TMAO promoted the proliferation of reactive astrocyte and formation of glial scar in MCAO/R rats. However, this effect was abolished by the Smurf2 overexpression or ALK5 silencing. We further found that TMAO upregulated the ALK5 expression by inhibiting the ubiquitination role of Smurf2. Overexpression of ALK5 reversed the inhibitory effect of Smurf2 on astrocyte proliferation, migration, and viability. Collectively, our work identifies the evolutionarily TMAO/Smurf2/ALK5 signaling as a major genetic factor in the control of reactive astrocyte proliferation and glial scar formation in ischemic stroke, thus laying a theoretical foundation for the identification of ischemic stroke.

2017 ◽  
Vol 8 ◽  
Author(s):  
Xiao Yang ◽  
Keyi Geng ◽  
Jinfan Zhang ◽  
Yanshuang Zhang ◽  
Jiaxiang Shao ◽  
...  

Author(s):  
Yong-Ming Zhu ◽  
Liang Lin ◽  
Chao Wei ◽  
Yi Guo ◽  
Yuan Qin ◽  
...  

AbstractNecroptosis initiation relies on the receptor-interacting protein 1 kinase (RIP1K). We recently reported that genetic and pharmacological inhibition of RIP1K produces protection against ischemic stroke-induced astrocytic injury. However, the role of RIP1K in ischemic stroke-induced formation of astrogliosis and glial scar remains unknown. Here, in a transient middle cerebral artery occlusion (tMCAO) rat model and an oxygen and glucose deprivation and reoxygenation (OGD/Re)-induced astrocytic injury model, we show that RIP1K was significantly elevated in the reactive astrocytes. Knockdown of RIP1K or delayed administration of RIP1K inhibitor Nec-1 down-regulated the glial scar markers, improved ischemic stroke-induced necrotic morphology and neurologic deficits, and reduced the volume of brain atrophy. Moreover, knockdown of RIP1K attenuated astrocytic cell death and proliferation and promoted neuronal axonal generation in a neuron and astrocyte co-culture system. Both vascular endothelial growth factor D (VEGF-D) and its receptor VEGFR-3 were elevated in the reactive astrocytes; simultaneously, VEGF-D was increased in the medium of astrocytes exposed to OGD/Re. Knockdown of RIP1K down-regulated VEGF-D gene and protein levels in the reactive astrocytes. Treatment with 400 ng/ml recombinant VEGF-D induced the formation of glial scar; conversely, the inhibitor of VEGFR-3 suppressed OGD/Re-induced glial scar formation. RIP3K and MLKL may be involved in glial scar formation. Taken together, these results suggest that RIP1K participates in the formation of astrogliosis and glial scar via impairment of normal astrocyte responses and enhancing the astrocytic VEGF-D/VEGFR-3 signaling pathways. Inhibition of RIP1K promotes the brain functional recovery partially via suppressing the formation of astrogliosis and glial scar. Graphical Abstract


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Huiling Zhang ◽  
Zhong-Sheng Li ◽  
Yong Ni ◽  
Xian-Yong Zhou ◽  
Shi-Gang Qiao

During the recovery phase of ischemic stroke, one of the major barriers for the spontaneous neuronal axon regeneration is the formation of astrogliosis and glial scar, and targeting astrogliosis becomes a therapeutic strategy for ischemic stroke. However, the mechanism regulating the process of scar components after ischemia still remains poorly understood. The aim of this study was to observe the role of RIP1 kinase (RIP1K), the key regulator of necroptosis (programmed necrosis) in the brain functional recovery after ischemic stroke and in the ischemic stroke-induced astrogliosis and glial scar formation in both in vitro and in vivo glial scar models. The glial scar formation model in vitro or in vivo was established by using primary cultured astrocyte subjected to 6 hours of oxygen-glucose deprivation (OGD) following 12 hours or 24 hours reperfusion, or by 90 min of transient middle cerebral artery occlusion (tMCAO) and reperfusion in rats. Western blotting analysis and immunohistochemical assay showed that knockdown of RIP1K by lentivirally-delivered shRNAs against RIP1K (shRNA RIP1K) could decrease several protein levels of glial scar markers such as glial fibillary acidic protein (GFAP), neurocan and phosphacan both in in vitro and in vivo glial scar models. Furthermore, western blotting analysis showed that knockdown of RIP1K reduced the protein levels of VEGF-D receptor 3 in in vitro glial scar models. In addition, knockdown of RIP1K also notably reduced the shrinking volume and ameliorated the behavioral symptoms in the recovery phase of rats after tMCAO. And immunocytochemistry assay demonstrated that RIP1K knockdown promoted the neuronal axonal generation in a neuron and astrocyte co-culture system. Our data indicates that RIP1K might play an important role in the formation of glial scar after ischemic stroke via promoting the function of VEGF-D receptor 3 in astrocytes.


2014 ◽  
Vol 11 (4) ◽  
pp. 344-348 ◽  
Author(s):  
Lijie Huang ◽  
Zhe-Bao Wu ◽  
Qichuan ZhuGe ◽  
WeiMing Zheng ◽  
Bei Shao ◽  
...  

Theranostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 1232-1248
Author(s):  
Zongwei Li ◽  
Yaying Song ◽  
Tingting He ◽  
Ruoxue Wen ◽  
Yongfang Li ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yan Hu ◽  
Guoyou Huang ◽  
Jin Tian ◽  
Jinbin Qiu ◽  
Yuanbo Jia ◽  
...  

AbstractInjury to the central nervous system (CNS) usually leads to the activation of astrocytes, followed by glial scar formation. The formation of glial scars from active astrocytes in vivo has been found to be dependent on the cell microenvironment. However, how astrocytes respond to different microenvironmental cues during scar formation, such as changes in matrix stiffness, remains elusive. In this work, we established an in vitro model to assess the responses of astrocytes to matrix stiffness changes that may be related to pathophysiology. The investigated hydrogel backbones are composed of collagen type I and alginate. The stiffness of these hybrid hydrogels can be dynamically changed by association or dissociation of alginate chains through adding crosslinkers of calcium chloride or a decrosslinker of sodium citrate, respectively. We found that astrocytes obtain different phenotypes when cultured in hydrogels of different stiffnesses. The obtained phenotypes can be switched in situ when changing matrix stiffness in the presence of cells. Specifically, matrix stiffening reverts astrogliosis, whereas matrix softening initiates astrocytic activation in 3D. Moreover, the effect of matrix stiffness on astrocytic activation is mediated by Yes-associated protein (YAP), where YAP inhibition enhances the upregulation of GFAP and contributes to astrogliosis. To investigate the underlying mechanism of matrix stiffness-dependent GFAP expression, we also developed a mathematical model to describe the time-dependent dynamics of biomolecules involved in the matrix stiffness mechanotransduction process of astrocytes. The modeling results further indicate that the effect of matrix stiffness on cell fate and behavior may be related to changes in the cytoskeleton and subsequent activity of YAP. The results from this study will guide researchers to re-examine the role of matrix stiffness in reactive astrogliosis in vivo and inspire the development of a novel therapeutic approach for controlling glial scar formation following injury, enabling axonal regrowth and improving functional recovery by exploiting the benefits of mechanobiology studies.


2008 ◽  
Vol 190 (7) ◽  
pp. 2496-2504 ◽  
Author(s):  
Po-Chi Soo ◽  
Yu-Tze Horng ◽  
Jun-Rong Wei ◽  
Jwu-Ching Shu ◽  
Chia-Chen Lu ◽  
...  

ABSTRACT Serratia marcescens cells swarm at 30°C but not at 37°C, and the underlying mechanism is not characterized. Our previous studies had shown that a temperature upshift from 30 to 37°C reduced the expression levels of flhDCSm and hagSm in S. marcescens CH-1. Mutation in rssA or rssB, cognate genes that comprise a two-component system, also resulted in precocious swarming phenotypes at 37°C. To further characterize the underlying mechanism, in the present study, we report that expression of flhDCSm and synthesis of flagella are significantly increased in the rssA mutant strain at 37°C. Primer extension analysis for determination of the transcriptional start site(s) of flhDCSm revealed two transcriptional start sites, P1 and P2, in S. marcescens CH-1. Characterization of the phosphorylated RssB (RssB∼P) binding site by an electrophoretic mobility shift assay showed direct interaction of RssB∼P, but not unphosphorylated RssB [RssB(D51E)], with the P2 promoter region. A DNase I footprinting assay using a capillary electrophoresis approach further determined that the RssB∼P binding site is located between base pair positions −341 and −364 from the translation start codon ATG in the flhDCSm promoter region. The binding site overlaps with the P2 “−35” promoter region. A modified chromatin immunoprecipitation assay was subsequently performed to confirm that RssB∼P binds to the flhDCSm promoter region in vivo. In conclusion, our results indicated that activated RssA-RssB signaling directly inhibits flhDCSm promoter activity at 37°C. This inhibitory effect was comparatively alleviated at 30°C. This finding might explain, at least in part, the phenomenon of inhibition of S. marcescens swarming at 37°C.


Sign in / Sign up

Export Citation Format

Share Document