scholarly journals Retracing Schwann Cell Developmental Transitions in Embryonic Dissociated DRG/Schwann Cell Cocultures in Mice

2021 ◽  
Vol 15 ◽  
Author(s):  
Venkat Krishnan Sundaram ◽  
Tatiana El Jalkh ◽  
Rasha Barakat ◽  
Camille Julie Isabelle Fernandez ◽  
Charbel Massaad ◽  
...  

Embryonic Dissociated Dorsal Root Ganglia (DRG) cultures are often used to investigate the role of novel molecular pathways or drugs in Schwann cell development and myelination. These cultures largely recapitulate the order of cellular and molecular events that occur in Schwann cells of embryonic nerves. However, the timing of Schwann cell developmental transitions, notably the transition from Schwann Cell Precursors (SCP) to immature Schwann cells (iSC) and then to myelinating Schwann cells, has not been estimated so far in this culture system. In this study, we determined the expression profiles of Schwann cell developmental genes during the first week of culture and then compared our data to the expression profiles of these genes in developing spinal nerves. This helped in identifying that SCP transition into iSC between the 5th and 7th day in vitro. Furthermore, we also investigated the transition of immature cells into pro-myelinating and myelinating Schwann cells upon the induction of myelination in vitro. Our results suggest that Schwann cell differentiation beyond the immature stage can be observed as early as 4 days post the induction of myelination in cocultures. Finally, we compared the myelinating potential of coculture-derived Schwann cell monocultures to cultures established from neonatal sciatic nerves and found that both these culture systems exhibit similar myelinating phenotypes. In effect, our results allow for a better understanding and interpretation of coculture experiments especially in studies that aim to elucidate the role of a novel actor in Schwann cell development and myelination.

2020 ◽  
Author(s):  
Venkat Krishnan Sundaram ◽  
Rasha Barakat ◽  
Charbel Massaad ◽  
Julien Grenier

AbstractEmbryonic Dissociated Dorsal Root Ganglia cultures are often used to investigate the role of novel molecular pathways or drugs in Schwann cell development and myelination. These cultures largely recapitulate the order of cellular and molecular events that occur in Schwann cells of embryonic nerves. However, the timing of Schwann cell developmental transitions, notably the transition from Schwann Cell Precursors to immature Schwann cells, has not been estimated so far in this culture system. In this study, we use RTqPCR to determine the expression profiles of Schwann cell developmental genes during the first week of culture. We first identified stable reference genes that show minimal variation across different experimental time points. Consequently, we normalized the mRNA profiles of Schwann cell developmental genes using the best internal reference genes. We then compared our data to the expression profiles of these genes in developing spinal nerves elaborated in numerous high-throughput and lineage tracing studies. This comparison helped in identifying that Schwann Cell Precursors transition into immature Schwann Cells between the 5th and 7th day in vitro. In effect, our data allows for a better understanding and interpretation of DRG culture experiments especially in studies that aim to elucidate the role of a novel gene in Schwann Cell development and myelination.


2006 ◽  
Vol 24 (8) ◽  
pp. 510-510
Author(s):  
F. Castagner ◽  
S. Atanasoski ◽  
M. Balda ◽  
K. Matter ◽  
U. Suter

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ella Ittner ◽  
Anna C. Hartwig ◽  
Olga Elsesser ◽  
Hannah M. Wüst ◽  
Franziska Fröb ◽  
...  

AbstractThe three SoxD proteins, Sox5, Sox6 and Sox13, represent closely related transcription factors with important roles during development. In the developing nervous system, SoxD proteins have so far been primarily studied in oligodendroglial cells and in interneurons of brain and spinal cord. In oligodendroglial cells, Sox5 and Sox6 jointly maintain the precursor state, interfere with terminal differentiation, and thereby ensure the proper timing of myelination in the central nervous system. Here we studied the role of SoxD proteins in Schwann cells, the functional counterpart of oligodendrocytes in the peripheral nervous system. We show that Schwann cells express Sox5 and Sox13 but not Sox6. Expression was transient and ceased with the onset of terminal differentiation. In mice with early Schwann cell-specific deletion of both Sox5 and Sox13, embryonic Schwann cell development was not substantially affected and progressed normally into the promyelinating stage. However, there was a mild and transient delay in the myelination of the peripheral nervous system of these mice. We therefore conclude that SoxD proteins—in stark contrast to their action in oligodendrocytes—promote differentiation and myelination in Schwann cells.


2005 ◽  
Vol 25 (5) ◽  
pp. 1821-1829 ◽  
Author(s):  
Ralf P. Friedrich ◽  
Beate Schlierf ◽  
Ernst R. Tamm ◽  
Michael R. Bösl ◽  
Michael Wegner

ABSTRACT For differentiation, Schwann cells rely on the class III POU domain transcription factor Oct-6, which is expressed transiently when Schwann cells have established a one-to-one relation with axons but have not yet started to myelinate. Loss of Oct-6 leads to a transient arrest in this promyelinating stage and a delay in myelination. Although the closely related POU domain protein Brn-2 is coexpressed with Oct-6 in Schwann cells, its loss has only mild consequences. Combined loss of both POU domain proteins, in contrast, dramatically increases the myelination delay, raising the question of how related POU domain proteins compare to each other in their activities. Here, we have replaced Oct-6 expression in the mouse with expression of the class III POU domain protein Brn-1. Although this protein is not normally expressed in Schwann cells, Brn-1 was capable of fully replacing Oct-6. Brn-1 efficiently induced Krox-20 expression as a prerequisite for myelination. Onset and extent of myelination were also indistinguishable from that of the wild type in mice that carried only Brn-1 instead of Oct-6 alleles. Similar to Oct-6, Brn-1 down-regulated its own expression at later stages of myelination. Thus, class III POU domain proteins can fully replace each other in Schwann cell development.


2007 ◽  
Vol 306 (1) ◽  
pp. 430
Author(s):  
Therese M. Roth ◽  
Poornapriya Ramamurthy ◽  
Fumi Ebisu ◽  
Kate F. Barald

2000 ◽  
Vol 148 (5) ◽  
pp. 1035-1046 ◽  
Author(s):  
Alistair N. Garratt ◽  
Octavian Voiculescu ◽  
Piotr Topilko ◽  
Patrick Charnay ◽  
Carmen Birchmeier

Neuregulin-1 provides an important axonally derived signal for the survival and growth of developing Schwann cells, which is transmitted by the ErbB2/ErbB3 receptor tyrosine kinases. Null mutations of the neuregulin-1, erbB2, or erbB3 mouse genes cause severe deficits in early Schwann cell development. Here, we employ Cre-loxP technology to introduce erbB2 mutations late in Schwann cell development, using a Krox20-cre allele. Cre-mediated erbB2 ablation occurs perinatally in peripheral nerves, but already at E11 within spinal roots. The mutant mice exhibit a widespread peripheral neuropathy characterized by abnormally thin myelin sheaths, containing fewer myelin wraps. In addition, in spinal roots the Schwann cell precursor pool is not correctly established. Thus, the Neuregulin signaling system functions during multiple stages of Schwann cell development and is essential for correct myelination. The thickness of the myelin sheath is determined by the axon diameter, and we suggest that trophic signals provided by the nerve determine the number of times a Schwann cell wraps an axon.


1993 ◽  
Vol 123 (5) ◽  
pp. 1223-1236 ◽  
Author(s):  
S Einheber ◽  
T A Milner ◽  
F Giancotti ◽  
J L Salzer

Ensheathment and myelination of axons by Schwann cells in the peripheral nervous system requires contact with a basal lamina. The molecular mechanism(s) by which the basal lamina promotes myelination is not known but is likely to reflect the activity of integrins expressed by Schwann cells. To initiate studies on the role of integrins during myelination, we characterized the expression of two integrin subunits, beta 1 and beta 4, in an in vitro myelination system and compared their expression to that of the glial adhesion molecule, the myelin-associated glycoprotein (MAG). In the absence of neurons, Schwann cells express significant levels of beta 1 but virtually no beta 4 or MAG. When Schwann cells are cocultured with dorsal root ganglia neurons under conditions promoting myelination, expression of beta 4 and MAG increased dramatically in myelinating cells, whereas beta 1 levels remained essentially unchanged. (In general agreement with these findings, during peripheral nerve development in vivo, beta 4 levels also increase during the period of myelination in sharp contrast to beta 1 levels which show a striking decrease.) In cocultures of neurons and Schwann cells, beta 4 and MAG appear to colocalize in nascent myelin sheaths but have distinct distributions in mature sheaths, with beta 4 concentrated in the outer plasma membrane of the Schwann cell and MAG localized to the inner (periaxonal) membrane. Surprisingly, beta 4 is also present at high levels with MAG in Schmidt-Lanterman incisures. Immunoprecipitation studies demonstrated that primary Schwann cells express beta 1 in association with the alpha 1 and alpha 6 subunits, while myelinating Schwann cells express alpha 6 beta 4 and possibly alpha 1 beta 1. beta 4 is also downregulated during Wallerian degeneration in vitro, indicating that its expression requires continuous Schwann cell contact with the axon. These results indicate that axonal contact induces the expression of beta 4 during Schwann cell myelination and suggest that alpha 6 beta 4 is an important mediator of the interactions of myelinating Schwann cells with the basal lamina.


Sign in / Sign up

Export Citation Format

Share Document