scholarly journals Phenotypes of GNAO1 Variants in a Chinese Cohort

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoling Yang ◽  
Xueyang Niu ◽  
Ying Yang ◽  
Miaomiao Cheng ◽  
Jing Zhang ◽  
...  

This study aimed to analyze the genotypes and phenotypes of GNAO1 variants in a Chinese cohort. Seven male and four female patients with GNAO1 variants were enrolled, including siblings of brothers. Ten different GNAO1 variants (nine missense and one splicing site) were identified, among which six were novel. All the variants were confirmed to be de novo in peripheral blood DNA. Eight (73%, 8/11) patients had epilepsy; the seizure onset age ranged from 6 h after birth to 4 months (median age, 2.5 months). Focal seizures were observed in all eight patients, epileptic spasms occurred in six (75%, 6/8), tonic spasm in four (50%, 4/8), tonic seizures in two, atypical absence in one, and generalized tonic–clonic seizures in one. Seven patients had multiple seizure types. Eight (73%, 8/11) patients had movement disorders, seven of them having only dystonia, and one having dystonia with choreoathetosis. Varying degrees of developmental delay (DD) were present in all 11 patients. The phenotypes were diagnosed as early infantile epileptic encephalopathy (EIEE) in two (18%) patients, which were further diagnosed as West syndrome. Movement disorders (MD) with developmental delay were diagnosed in two (18%) brothers. EIEE and MD were overlapped in six (55%) patients, among which two were diagnosed with West syndrome, one with Ohtahara syndrome, and the other three with non-specific EIEE. One (9%) patient was diagnosed as DD alone. The onset age of GNAO1-related disorders was early infancy. The phenotypic spectrum of GNAO1 included EIEE, MD with DD, and DD alone.

Author(s):  
Ciria C Hernandez ◽  
XiaoJuan Tian ◽  
Ningning Hu ◽  
Wangzhen Shen ◽  
Mackenzie A Catron ◽  
...  

Abstract Dravet syndrome is a rare, catastrophic epileptic encephalopathy that begins in the first year of life, usually with febrile or afebrile hemiclonic or generalized tonic-clonic seizures followed by status epilepticus. De novo variants in genes that mediate synaptic transmission such as SCN1A and PCDH19 are often associated with Dravet syndrome. Recently, GABAA receptor subunit genes (GABRs) encoding α1 (GABRA1), β3 (GABRB3) and γ2 (GABRG2), but not β2 (GABRB2) or β1 (GABRB1), subunits are frequently associated with Dravet syndrome or Dravet syndrome-like phenotype. We performed next generation sequencing on 870 patients with Dravet syndrome and identified nine variants in three different GABRs. Interestingly, the variants were all in genes encoding the most common GABAA receptor, the α1β2γ2 receptor. Mutations in GABRA1 (c.644T>C, p.L215P; c.640C>T, p.R214C; c.859G>A; V287I; c.641G>A, p.R214H) and GABRG2 (c.269C>G, p.T90R; c.1025C>T, p.P342L) presented as de novo cases, while in GABRB2 two variants were de novo (c.992T>C, p.F331S; c.542A>T, p.Y181F) and one was autosomal dominant and inherited from the maternal side (c.990_992del, p.330_331del). We characterized the effects of these GABR variants on GABAA receptor biogenesis and channel function. We found that defects in receptor gating were the common deficiency of GABRA1 and GABRB2 Dravet syndrome variants, while mainly trafficking defects were found with the GABRG2 (c.269C>G, p.T90R) variant. It seems that variants in α1 and β2 subunits are less tolerated than in γ2 subunits, since variant α1 and β2 subunits express well but were functionally deficient. This suggests that all of these GABR variants are all targeting GABR genes that encode the assembled α1β2γ2 receptor, and regardless of which of the three subunits are mutated, variants in genes coding for α1, β2 and γ2 receptor subunits make them candidate causative genes in the pathogenesis of Dravet syndrome.


Author(s):  
SE Buerki ◽  
GA Horwath ◽  
MI Van Allen ◽  
A Datta ◽  
C Boelman ◽  
...  

Background: KCNQ2 abnormalities were described in infants with benign familial neonatal seizures (BFNS) and epileptic encephalopathy (EE). Associated features possibly include abnormal neuroimaging findings such as hypomyelination and/or T2 high signal of basal ganglia. Methods: This report describes 4 infants carrying different heterozygous KCNQ2 variants and 2 infants with 20q13.33 deletions encompassing KCNQ2 gene. Results: The different KCNQ2 mutations led to EE in 3 patients and included a novel de novo missense variant, p.Arg201Cys/c.601C>T, in an infant with severe EE and global developmental delay, hyperkinetic movement disorder, autonomic dysfunction with chronic hypoventilation, apnea, low GABA levels in CSF, and hypomyelination. She died at age 3 years of respiratory failure. One patient with BFNS and normal MRI has a previously reported c.508delG frame shift mutation in KCNQ2. Of the two de novo 22q13.33 deletions (1.2Mb versus 254.1 Kb) the larger caused a more severe phenotype, including focal epilepsy from infancy until 4 years, moderate developmental delay and diffuse brain volume loss. Conclusions: Along with varied epilepsy phenotypes and neuroimaging findings KCNQ abnormalities were associated with severe autonomic dysfunction and reduced CSF GABA levels. This might have further treatment implications, besides that the altered potassium channel function itself presents a therapeutic target.


2017 ◽  
Vol 3 (1) ◽  
pp. 81-85 ◽  
Author(s):  
Satoshi Akamine ◽  
Noriaki Sagata ◽  
Yasunari Sakai ◽  
Takahiro A. Kato ◽  
Takeshi Nakahara ◽  
...  

PLoS Genetics ◽  
2021 ◽  
Vol 17 (6) ◽  
pp. e1009608
Author(s):  
Jia-Hui Sun ◽  
Jiang Chen ◽  
Fernando Eduardo Ayala Valenzuela ◽  
Carolyn Brown ◽  
Diane Masser-Frye ◽  
...  

The X-linked GRIA3 gene encodes the GLUA3 subunit of AMPA-type glutamate receptors. Pathogenic variants in this gene were previously reported in neurodevelopmental diseases, mostly in male patients but rarely in females. Here we report a de novo pathogenic missense variant in GRIA3 (c.1979G>C; p. R660T) identified in a 1-year-old female patient with severe epilepsy and global developmental delay. When exogenously expressed in human embryonic kidney (HEK) cells, GLUA3_R660T showed slower desensitization and deactivation kinetics compared to wildtype (wt) GLUA3 receptors. Substantial non-desensitized currents were observed with the mutant but not for wt GLUA3 with prolonged exposure to glutamate. When co-expressed with GLUA2, the decay kinetics were similarly slowed in GLUA2/A3_R660T with non-desensitized steady state currents. In cultured cerebellar granule neurons, miniature excitatory postsynaptic currents (mEPSCs) were significantly slower in R660T transfected cells than those expressing wt GLUA3. When overexpressed in hippocampal CA1 neurons by in utero electroporation, the evoked EPSCs and mEPSCs were slower in neurons expressing R660T mutant compared to those expressing wt GLUA3. Therefore our study provides functional evidence that a gain of function (GoF) variant in GRIA3 may cause epileptic encephalopathy and global developmental delay in a female subject by enhancing synaptic transmission.


Brain ◽  
2020 ◽  
Vol 143 (7) ◽  
pp. 2039-2057 ◽  
Author(s):  
Ariadna Amador ◽  
Christopher D Bostick ◽  
Heather Olson ◽  
Jurrian Peters ◽  
Chad R Camp ◽  
...  

Abstract NMDA receptors play crucial roles in excitatory synaptic transmission. Rare variants in GRIN2A encoding the GluN2A subunit are associated with a spectrum of disorders, ranging from mild speech and language delay to intractable neurodevelopmental disorders, including but not limited to developmental and epileptic encephalopathy. A de novo missense variant, p.Ser644Gly, was identified in a child with this disorder, and Grin2a knock-in mice were generated to model and extend understanding of this intractable childhood disease. Homozygous and heterozygous mutant mice exhibited altered hippocampal morphology at 2 weeks of age, and all homozygotes exhibited lethal tonic-clonic seizures by mid-third week. Heterozygous adults displayed susceptibility to induced generalized seizures, hyperactivity, repetitive and reduced anxiety behaviours, plus several unexpected features, including significant resistance to electrically-induced limbic seizures and to pentylenetetrazole induced tonic-clonic seizures. Multielectrode recordings of neuronal networks revealed hyperexcitability and altered bursting and synchronicity. In heterologous cells, mutant receptors had enhanced NMDA receptor agonist potency and slow deactivation following rapid removal of glutamate, as occurs at synapses. NMDA receptor-mediated synaptic currents in heterozygous hippocampal slices also showed a prolonged deactivation time course. Standard anti-epileptic drug monotherapy was ineffective in the patient. Introduction of NMDA receptor antagonists was correlated with a decrease in seizure burden. Chronic treatment of homozygous mouse pups with NMDA receptor antagonists significantly delayed the onset of lethal seizures but did not prevent them. These studies illustrate the power of using multiple experimental modalities to model and test therapies for severe neurodevelopmental disorders, while revealing significant biological complexities associated with GRIN2A developmental and epileptic encephalopathy.


2021 ◽  
Vol 8 (5) ◽  
pp. 941
Author(s):  
Tapan Patel ◽  
Shivani Patel

West syndrome is a severe epilepsy syndrome composed of the triad of infantile spasms, hypsarrhythmia on electroencephalography (EEG) and mental retardation. It is sometimes due to the progression of a rare and fatal condition called early infantile epileptic encephalopathy (Ohtahara syndrome). Here we describe the case of a 3 year old male, who is a known case of West syndrome, presenting with recurrent breakthrough convulsions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pan Gong ◽  
Xianru Jiao ◽  
Dan Yu ◽  
Zhixian Yang

Objective:KCNT2 gene mutations had been described to cause developmental and epileptic encephalopathies (DEEs). In this study, we presented the detailed clinical features and genetic analysis of two unrelated patients carrying two de novo variants in KCNT2 and reviewed eight different cases available in publications.Methods: Likely pathogenic variants were identified by whole exome sequencing; clinical data of the patients were retrospectively collected and analyzed.Results: Our two unrelated patients were diagnosed with Ohtahara syndrome followed by infantile spasms (IS) and possibly the epilepsy of infancy with migrating focal seizures (EIMFS), respectively. They both manifested dysmorphic features with hirsute arms, thick hair, prominent eyebrows, long and thick eyelashes, a broad nasal tip, and short and smooth philtrum. In the eight patients reported previously, two was diagnosed with IS carrying a ‘change-of-function' mutation and a gain-of-function mutation, respectively, two with EIMFS-like carrying a gain-of-function mutation and a loss-of-function mutation, respectively, one with EIMFS carrying a loss-of-function mutation, three with DEE without functional analysis. Among them, two patients with gain-of-function mutations both exhibited dysmorphic features and presented epilepsy phenotype, which was similar to our patients.Conclusion: Overall, the most common phenotypes associated with KCNT2 mutation were IS and EIMFS. Epilepsy phenotype associated with gain- and loss-of-function mutations could overlap. Additional KCNT2 cases will help to make genotype-phenotype correlations clearer.


Sign in / Sign up

Export Citation Format

Share Document