scholarly journals The Epidemiology of Neurological Complications in Adults With Sickle Cell Disease: A Retrospective Cohort Study

2021 ◽  
Vol 12 ◽  
Author(s):  
Chinedu Maduakor ◽  
Vafa Alakbarzade ◽  
Yezen Sammaraiee ◽  
Angeliki Vakrinou ◽  
Alina Corobana ◽  
...  

Introduction: Risk factors for neurological complications in sickle cell disease differ in the adult and pediatric populations. Here, we focused on neurological complications in adults with sickle cell disease.Methods: Patients were selected using the audit data from the St George's Hospital Red Cell Database. The genotyping, demographics, clinical data, and investigation findings were collected.Results: A total of 303 patients were enrolled in the study: hemoglobin S homozygosity (HbSS) genotype 56%, hemoglobin S and C coinheritance (HbSC) genotype 35%, and hemoglobin S and β-thalassemia coinheritance (HbSβ) thalassemia genotype 9%; the mean age was 38.8 years (±13.5 SD) with 46% males. The most common neurological complication was cerebrovascular disease (n = 37, 12%) including those with ischemic stroke (10%), cerebral vasculopathy (3%), and intracranial hemorrhage (1%). Ischemic stroke was common among the HbSS genotype compared with other genotypes (8 vs. 1.6%, p = 0.001). Comparing the patients with sickle cell disease who had suffered a stroke to those who had not, there was a higher proportion of intracranial vasculopathy (p = 0.001, in particular, Moyamoya) and cognitive dysfunction (p < 0.0001).Conclusion: Our cohort supports previous reports that the most common neurological complication in adult sickle cell patients is cerebrovascular disease. Strategies to prevent cerebral vasculopathy and cognitive impairment should be explored.

PEDIATRICS ◽  
1974 ◽  
Vol 54 (4) ◽  
pp. 438-441
Author(s):  
Gerald Erenberg ◽  
Steven S. Rinsler ◽  
Bernard G. Fish

Four cases of lead neuropathy in children with hemoglobin S-S or S-C disease are reported. Neuropathy is a rare manifestation of lead poisoning in children, and only ten other cases have been well documented in the pediatric literature. The last previous case report of lead neuropathy was also in a child with hemoglobin S-S disease. The neuropathy seen in the children with sickle cell disease was clinically similar to that seen in the previously reported cases in nonsicklers, but differed in both groups from that usually seen in adult cases. It is, therefore, postulated that children with sickle cell disease have an increased risk of developing neuropathy with exposure to lead. The exact mechanism for this association remains unknown, but in children with sickle cell disease presenting with symptoms or signs of peripheral weakness, the possibility of lead poisoning must be considered.


2012 ◽  
Vol 2012 ◽  
pp. 1-3 ◽  
Author(s):  
Donovan Calder ◽  
Maryse Etienne-Julan ◽  
Marc Romana ◽  
Naomi Watkins ◽  
Jennifer M. Knight-Madden

A patient who presented with sickle retinopathy and hemoglobin electrophoresis results compatible with sickle cell trait was found, on further investigation, to be a compound heterozygote with hemoglobin S and hemoglobin New York disease. This recently reported form of sickle cell disease was not previously known to cause retinopathy and surprisingly was observed in a non-Asian individual. The ophthalmological findings, the laboratory diagnosis, and possible pathophysiology of this disorder are discussed. Persons diagnosed with sickle cell trait who present with symptoms of sickle cell disease may benefit from specific screening for this variant.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 68-68 ◽  
Author(s):  
Janet L. Kwiatkowski ◽  
Julie Kanter ◽  
Heather J. Fullerton ◽  
Jenifer Voeks ◽  
Ellen Debenham ◽  
...  

Abstract Background: The Stroke Prevention Trial in Sickle Cell Anemia (STOP) and Optimizing Primary Stroke Prevention in Sickle Cell Anemia (STOP 2) established routine transcranial Doppler ultrasound (TCD) screening with indefinite chronic red cell transfusions (CRCT) for children with abnormal TCD as standard of care. To identify children at high-risk of stroke, annual TCD screening is recommended from ages 2 to 16 years, with more frequent monitoring if the result is not normal. A reduction in stroke incidence in children with SCD has been reported in several clinical series and analyses utilizing large hospital databases when comparing rates before and after the publication of the STOP study in 1998. We sought to determine the rate of first ischemic stroke in a multicenter cohort of children who had previously participated in the STOP and/or STOP 2 trials and to determine whether these strokes were screening or treatment failures. Subjects and Methods: Between 1995 and 2005, STOP and STOP 2 (STOP/2) were conducted at 26 sites in the US and Canada. These studies included 3,835 children, ages 2 to 16 y with SCD type SS or S-beta-0-thalassemia. Participation in STOP/2 ranged from a single screening TCD to randomization. STOP 2 also had an observational arm for children on CRCT for abnormal TCD whose TCD had not reverted to normal. The Post-STOP study was designed to follow-up the outcomes of children who participated in one or both trials. 19 of the 26 original study sites participated in Post-STOP, contributing a total of 3,539 (92%) of the STOP/2 subjects. After exit from STOP/2, these children received TCD screening and treatment according to local practices. Data abstractors visited each clinical site and obtained retrospective data from STOP/2 study exit to 2012-2014 (depending on site) including follow-up TCD and brain imaging results, clinical information, and laboratory results. Two vascular neurologists, blinded to STOP/2 status and prior TCD and neuroimaging results, reviewed source records to confirm all ischemic strokes, defined as a symptomatic cerebral infarction; discordant opinions were resolved through discussion. For the first Post-STOP ischemic stroke, prior TCD result and treatment history subsequently were analyzed. Results: Of the 3,539 subjects, follow-up data were available for 2,850 (81%). Twelve children who had a stroke during STOP or STOP2 were excluded from these analyses resulting in data on 2,838 subjects. The mean age at the start of Post-STOP was 10.5 y and mean duration of follow-up after exiting STOP/2 was 9.1 y. A total of 69 first ischemic strokes occurred in the Post-STOP observation period (incidence 0.27 per 100 pt years). The mean age at time of stroke was 14.4±6.2 (median 13.8, range 3.5-28.9) y. Twenty-five of the 69 patients (36%) had documented abnormal TCD (STOP/2 or Post-STOP) prior to the stroke; 15 (60%) were receiving CRCT and 9 (36%) were not (treatment data not available for 1 subject). Among the 44 subjects without documented abnormal TCD, 29 (66%) had not had TCD re-screen in the Post-STOP period prior to the event; 7 of these 29 (24%) were 16 y or older at the start of Post-STOP, which is beyond the recommended screening age. Four of the 44 (9%) patients had inadequate TCD in Post-STOP (1 to 10.7 y prior to event). Six (14%) had normal TCD more than a year before the event (1.2 - 4 y); all but one of these children were younger than 16 y at the time of that TCD. Only 5 (11%) had a documented normal TCD less than 1 year prior to the event. Conclusions: In the Post-STOP era, the rate of first ischemic stroke was substantially lower than that reported in the Cooperative Study of Sickle Cell Disease, prior to implementation of TCD screening. Many (39%) of the Post-STOP ischemic strokes were associated with a failure to re-screen according to current guidelines, while only 11% occurred in children who had had recent low-risk TCD. Among those known to be at high risk prior to stroke, treatment refusal or inadequate treatment may have contributed. While TCD screening and treatment are effective at reducing ischemic stroke in clinical practice, significant gaps in screening and treatment, even at sites experienced in the STOP protocol, remain to be addressed. Closing these gaps should provide yet further reduction of ischemic stroke in SCD. Disclosures No relevant conflicts of interest to declare.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Katherine C Wood ◽  
Heidi M Schmidt ◽  
Scott Hahn ◽  
Mehdi Nouraie ◽  
Mara Carreno ◽  
...  

Introduction: Stroke and silent infarcts are serious complications of sickle cell disease (SCD), occurring frequently in children. Decreased nitric oxide bioavailability and responsiveness contribute to neurovascular disease. Cytochrome b5 reductase 3 (Cyb5R3) is a heme iron reductase that reduces oxidized soluble guanylate cyclase heme iron (Fe 3+ --> Fe 2+ ) to preserve nitric oxide signaling. A loss-of-function Cyb5R3 missense variant (T117S) occurs with high frequency (0.23 minor allele) in persons of African ancestry. Hypothesis: We hypothesized that impaired reductase function of T117S Cyb5R3 exacerbates brain damage after ischemic stroke in SCD. Methods: Bone marrow transplant was used to create male SCD mice with wild type (SS/WT) or T117S (SS/T117S) Cyb5R3. Blood was sampled before and after middle cerebral artery occlusion (55 minutes occlusion, 48 hours reperfusion). Infarct volume (IV) was determined by 2,3,5-triphenyltetrazolium chloride. Intravascular hemolysis and correlation (Pearson’s R) of hematology changes with IV were determined. Baseline Walk-PHaSST (NCT00492531) data were analyzed for stroke occurrence. Results: Brain IV (63 vs 27 cm 3 , P=0.003) and mortality (3/6 vs 0/8) were greater in SS/T117S vs SS/WT. Red blood cells, hemoglobin and hematocrit declined as IV increased. Plasma oxyhemoglobin increased in parallel with IV (r = 0.74, P=0.09). There were different signatures to hematologic changes that occurred with IV in SCD. Relative to wild type, T117S contracted the erythroid compartment (red blood cell: -13% vs 13%, P=0.003; hematocrit: -20% vs 1%, P=0.008; hemoglobin: -18% vs 2%, P=0.007). Mean platelet volume correlated with IV in SS/T117S (r = 0.87, P=0.06), while the inverse occurred in SS/WT (r = -0.63, P=0.09) Monocytes increased in parallel with IV in SS/T117S (r = 0.73, P=0.16), but followed the opposite trajectory in SS/WT (r = -0.77, P=0.04). WalkPHaSST participants with T117S Cyb5R3 self-reported more ischemic stroke (7.4% vs 5.1%) relative to wild type. Conclusion: Cyb5R3 is an important modifier of the evolution and outcome of ischemic brain injury in SCD and its hematologic consequences. Our findings indicate a bidirectional relationship between stroke and anemia in SCD that may axially turn on Cyb5R3 activity.


PEDIATRICS ◽  
1988 ◽  
Vol 81 (6) ◽  
pp. 749-755
Author(s):  
Elliott Vichinsky ◽  
Deborah Hurst ◽  
Ann Earles ◽  
Klara Kleman ◽  
Bertram Lubin

Newborn screening for sickle cell disease has been recommended as a method of decreasing patient mortality. However, its effectiveness in accomplishing this has not been reliably measured. To help determine the effectiveness, 10 years of experience in newborn screening have been summarized. The effects of early patient enrollment in a comprehensive treatment program on long-term morbidity and mortality are reported. From 1975 to 1985, 84,663 newborns were screened regardless of race or ethnic background. Bart's hemoglobin was present in 5%, hemoglobin AS in 2.6%, and hemoglobin AC in 0.75%. Excluding Bart's, approximately 3.6% of all newborns were carriers for hemoglobinopathy. Sickle cell disease occurred in 1:951 births (58 hemoglobin SS, 25 hemoglobin FSC, three hemoglobin S-β+-thalassemia, and three hemoglobin S-β°-thalassemia). In addition, one in every 4,233 newborns had a clinically significant thalassemia syndrome (eight hemoglobin FE, ten hemoglobin F only, two hemoglobin H). Compared with other newborn screening programs in California, (congenital hypothyroidism, 1:3,849; phenylketonuria 1:22,474, galactosemia 1:74,103), hemoglobinopathies are the most prevalent congenital disease. Eighty-one newborns with sickle cell disease were followed for 7.2 years. Patients experienced 513 hospitalizations, including 13 episodes of sepsis with or without meningitis and ten acute sequestration crises. The overall mortality rate for patients with sickle cell anemia diagnosed in the newborn period was 1.8%. In comparison, the clinical course of 64 patients with sickle cell anemia diagnosed after 3 months of age and followed for an average of 9.4 years was analyzed. Five of these patients died. In two of these, sickle cell anemia was diagnosed at the time of the death. Overall mortality rate in this group was 8%. In summary, the data indicate that newborn screening, when coupled with extensive follow-up and education, will significantly decrease patient mortality.


Blood ◽  
1994 ◽  
Vol 84 (9) ◽  
pp. 3182-3188 ◽  
Author(s):  
M Maier-Redelsperger ◽  
CT Noguchi ◽  
M de Montalembert ◽  
GP Rodgers ◽  
AN Schechter ◽  
...  

Abstract Intracellular hemoglobin S (HbS) polymerization is most likely to be the primary determinant of the clinical and biologic manifestations of sickle cell disease (SCD). Fetal hemoglobin (HbF) does not enter the HbS polymer and its intracellular expression in sickle erythrocytes inhibits polymerization. HbF levels, high at birth but decreasing thereafter, protect the newborn from the clinical manifestations of this hemoglobinopathy. We have measured the sequential changes in HbF, F reticulocytes, and F cells in the first 2 years of life in 25 children with SCD and compared the results with those obtained in 30 normal children (AA). We have also calculated HbF per F cell (F/F cell), the preferential survival of F cells versus non-F cells, as measured by the ratio F cells versus F reticulocytes (FC/FR) and polymer tendency at 40% and 70% oxygen saturation. HbF levels decreased from about 80.4% +/- 4.0% at birth to 9.2% +/- 2.9% at 24 months. During this time, we observed a regular decrease of the F reticulocytes and the F cells. The kinetics of the decline of F/F cell was comparable with the decline of HbF, rapid from birth (mean, 27.0 +/- 3.6 pg) to 12 months of age (mean, 8.5 +/- 1.5 pg) and then slower from 12 to 24 months of age (mean, 6.2 +/- 1.0 pg) in the SCD children. In the AA children, the decrease in HbF, due to changes in both numbers of F cells and F/F cell, was more precipitous, reaching steady-state levels by 10 months of age. Calculated values for mean polymer tendency in the F-cell population showed that polymerization should begin to occur at 40% oxygen saturation at about 3 months and increase progressively with age, whereas polymerization at 70% oxygen saturation would not occur until about 24 months. These values correspond to HbF levels of 50.8% +/- 10.8% and 9.2% +/- 2.9%, respectively, and F/F cell levels of 15.6 +/- 4.5 pg and 6.2 +/- 1.0 pg, respectively. In the non--F-cell population, polymerization was expected at birth at both oxygen saturation values. Three individuals had significantly greater predicted polymerization tendency than the remainder of the group because of early decreases in HbF. These individuals in particular, the remainder of the cohort, as well as other recruited newborns, will be studied prospectively to ascertain the relationship among hematologic parameters, which determine polymerization tendency and the various clinical manifestations of SCD.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4799-4799
Author(s):  
Angela Zanette ◽  
Karla O. Mota ◽  
Marilda Souza Goncalves ◽  
Laise Vilasboas Schettini ◽  
Lais Magalhaes Aguiar ◽  
...  

Abstract Introduction: The hemoglobinopathies are the most common monogenic disorders known. A mutation in the gene for β globin gave origin to hemoglobin S, an abnormal hemoglobin originated in Africa. Sickle cell disease (SCD) is characterized by the presence of hemoglobin S, which results in vasoocclusion episodes and hemolytic anemia throughout patients life. Vascular occlusion leads to acute events and progressive disabling organ damage. Sickle cell anemia is the homozygous state SS, while hemoglobinopathy SC is a doubly heterozygous state, where hemoglobin S occurs in combination with hemoglobin C. Brazil has a prominent African ancestry and SCD is highly prevalent in some regions of the country. In Bahia State, for example, neonatal screening data have shown that, from every 650 children born alive, one has SCD, mostly homozygous SS. Among other therapeutic measures, packed red blood cells (RBC) play a prominent role in SCD management. In situations such as acute chest syndrome (ACS), primary and secondary prevention of stroke, splenic or hepatic sequestration crisis, severe anemia, complicated pregnancy, isquemic organ damages and others, the transfusions may save lives. Although RBC may contribute to reduce morbidity and improve quality of life in SCD patients, there still are risks. Among other risk categories, alloimmunization may result from transfusions and occurs in 5 % to 50 % of SCD patients. It is still not known whether allosensibilization significantly affects the clinical outcomes in SCD. Objecive: The purpose of this study was to compare the clinical profile of multitransfused adult SCD patients who developed alloantibodies (ALO) to patients with the same disease, coming from the same population who did not become alloimmunized (non-ALO). Methods: This is a cross sectional study where medical records of SCD patients, referred to a reference center of Salvador, the capital of Bahia State, Brazil, were reviewed. Only SCD patients 18 years of age or older were included. They had received at least 3 RBC transfusions from 2004 to 2007, or had any alloantibody identified during this period. Patient characteristics, clinical findings, number of transfusions, frequency and specificity of alloantibodies, laboratory data, and the main clinical outcomes were reviewed. Results: a hundred and eight patients were included: 105 SS and 3 SC. The pre-transfusional RBC matching was done to ABH, D,C,c,E,e and Kell antigens. 56 patients developed alloantibodies (53 SS and 3 SC). Anti-E, anti-K, and anti-C were the most prevalent alloantibodies identified (39,3 %, 21,4 % and 16,1 %, respectively). Among the variables addressed in this study, age (higher in non-ALO, .041) and antiglobulin test positivity, more prevalente in ALO (.0001), depicted statistically significant difference. A few patients developed immune hemolysis, controlled successfully with corticosteroids. Alloimmunization was more prevalent among women, although no statistically significant difference was reached between ALO and non-ALO Other variables such as number of transfusions, hematological profile, biochemical data and complications such as stroke, leg ulcers, osteonecrosis, renal disease, abnormal cardiac features, and pulmonary hypertension did not show significant difference between both groups. Conclusion: his study shows that, although alloimmunization is a potential dangerous consequence of RBC transfusions, it did not modify the clinical profile of SCD alloimmunized patients. The concomitance of allosensibilization and autoantibodies in SCD leads to additional difficulties in the RBC matching for transfusion and may exacerbate hemolysis. In order to address autoimmunity in SCD, prospective studies with larger samples are needed.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1387-1387
Author(s):  
Adam M Bush ◽  
Matthew Borzage ◽  
Soyoung Choi ◽  
Thomas Coates ◽  
John C Wood

Abstract Introduction Chronic Transfusion Therapy (CTT) has been successful in decreasing stroke frequency in patients with sickle cell disease (SCD). Despite this, indication for CTT is largely based on empirical evidence and the mechanisms by which CTT protects the brain remain unclear. CTT improves oxygen carrying capacity and lowers hemoglobin S%, but the corresponding impact on cerebral blood flow(CBF), cerebral metabolic rate (CMRO2), and oxygen extraction fraction (OEF) is unknown. Understanding the impact of these competing influences in non-transfused (NT) and chronically transfused (CT) SCD patients will inform stroke prevention. Thus, we measured CBF, CMRO2, and OEF, in NT and CT patients with SCD using magnetic resonance imaging (MRI). Methods All patients were recruited with informed consent or assent and this study was approved by the CHLA IRB. Fourteen (6 NT, 8 CT) patients with SCD and 12 healthy ethnicity matched controls (CTL) were studied. Exclusion criteria included pregnancy, previous stroke, acute chest or pain crisis hospitalization within one month. Complete blood count and hemoglobin electrophoresis were performed. Arterial oxygen saturation (SaO2) was measured via peripheral pulse oximetery. CaO2 was calculated as the product of hemoglobin, SaO2 and the oxygen density of hemoglobin (1.36 ml/g). Phase contrast imaging of the carotid and vertebral arteries was used to measure global CBF. T2 Relaxation Under Spin Tagging (TRUST) was used to measured T2 relaxation of blood within the sagittal sinus. T2 relaxation was converted to SvO2 via previously validated calibration curves. OEF represented the difference of SaO2 andSvO2 divided bySaO2. CMRO2 was calculated as the product of CBF and OEF. High resolution, 3D, T1 weighted images were used for brain volume calculation using BrainSuiteñ software. Results Table 1 summarizes the results. Hemoglobin and oxygen content were well matched between transfused and non transfused SCD patients. Cerebral metabolic rate was also nearly identical in the two groups. However, CT patients exhibited 25% higher CBF than NT SCD patients, allowing them to have a normal oxygen extraction fraction ~30%. In contrast, OEF in NT SCD patients was abnormally high (37.8%), suggesting a decreased extraction reserve. Total oxygenation index (TOI) by NIRS also trended lower in NT SCD patients, consistent with the greater oxygen extraction and lower cerebral venous saturations observed. Abstract 1387. TableCTL (reference)NTCTp value (NT vs CT)Hemoglobin (g/dl)13.5 ± 1.229.7 ± 1.259.7 ± 1.05nsCaO2 (umol O2/ml)9.85 ± .996.84 ± 1.176.95 ±.71nsCMRO2 (umol O2/100g/min)193.1 ± 44.9239.7 ± 35.3238.6 ± 38.3nsCBF (ml/100g/min)70.0 ± 12.8101.5 ± 16.6127.1 ± 23.5< 0.05OEF (%)30.0 ± 7.137.8. ± 3.0629.7 ± 7.53< 0.05NIRS TOI56.0 ± 4.0948.5 ± 4.2153.5 ± 8.760.076SvO2 (%)65.6 ± 6.856.2 ± 5.267.1 ± 6.7< 0.05 Discussion: Chronically transfused SCD patients achieve normal brain oxygenation metrics (SvO2, OEF, and NIRS) but require very high CBF to achieve this balance (lowering flow reserve). In contrast, NT SCD patients have smaller increases in CBF but require greater oxygen extraction to meet cerebrovascular demands (lowering extraction reserve). Hemoglobin S mediate changes in oxygen dissociation, blood viscosity, red cell deformability and microvascular damage potentially mediate these differences but their interplay is complicated and requires further study. Disclosures Coates: novartis: Consultancy, Honoraria, Speakers Bureau; shire: Consultancy, Honoraria; apo pharma: Consultancy, Honoraria; acceleron: Consultancy, Honoraria.


2020 ◽  
Vol 42 (8) ◽  
pp. e775-e777
Author(s):  
Erin Goode ◽  
Donna Boruchov ◽  
Jennifer L. Oliveira ◽  
Ching C. Lau

Sign in / Sign up

Export Citation Format

Share Document