scholarly journals New Epidermal-Growth-Factor-Related Insights Into the Pathogenesis of Multiple Sclerosis: Is It Also Epistemology?

2021 ◽  
Vol 12 ◽  
Author(s):  
Giuseppe Scalabrino

Recent findings showing that epidermal growth factor (EGF) is significantly decreased in the cerebrospinal fluid (CSF) and spinal cord (SC) of living or deceased multiple sclerosis (MS) patients, and that its repeated administration to rodents with chemically- or virally-induced demyelination of the central nervous system (CNS) or experimental allergic encephalomyelitis (EAE) prevents demyelination and inflammatory reactions in the CNS, have led to a critical reassessment of the MS pathogenesis, partly because EGF is considered to have little or no role in immunology. EGF is the only myelinotrophic factor that has been tested in the CSF and spinal cord of MS patients, and it has been shown there is a good correspondence between liquid and tissue levels. This review: (a) briefly summarises the positive EGF effects on neural stem cells, oligodendrocyte cell lineage, and astrocytes in order to explain, at least in part, the biological basis of the myelin loss and remyelination failure in MS; and (b) after a short analysis of the evolution of the principle of cause-effect in the history of Western philosophy, highlights the lack of any experimental immune-, toxin-, or virus-mediated model that precisely reproduces the histopathological features and “clinical” symptoms of MS, thus underlining the inapplicability of Claude Bernard's crucial sequence of “observation, hypothesis, and hypothesis testing.” This is followed by a discussion of most of the putative non-immunologically-linked points of MS pathogenesis (abnormalities in myelinotrophic factor CSF levels, oligodendrocytes (ODCs), astrocytes, extracellular matrix, and epigenetics) on the basis of Popper's falsification principle, and the suggestion that autoimmunity and phologosis reactions (surely the most devasting consequences of the disease) are probably the last links in a chain of events that trigger the reactions. As it is likely that there is a lack of other myelinotrophic growth factors because myelinogenesis is controlled by various CNS and extra-CNS growth factors and other molecules within and outside ODCs, further studies are needed to investigate the role of non-immunological molecules at the time of the onset of the disease. In the words of Galilei, the human mind should be prepared to understand what nature has created.

Author(s):  
Giuseppe Scalabrino

Abstract This article reviews the wealth of papers dealing with the different effects of epidermal growth factor (EGF) on oligodendrocytes, astrocytes, neurons, and neural stem cells (NSCs). EGF induces the in vitro and in vivo proliferation of NSCs, their migration, and their differentiation towards the neuroglial cell line. It interacts with extracellular matrix components. NSCs are distributed in different CNS areas, serve as a reservoir of multipotent cells, and may be increased during CNS demyelinating diseases. EGF has pleiotropic differentiative and proliferative effects on the main CNS cell types, particularly oligodendrocytes and their precursors, and astrocytes. EGF mediates the in vivo myelinotrophic effect of cobalamin on the CNS, and modulates the synthesis and levels of CNS normal prions (PrPCs), both of which are indispensable for myelinogenesis and myelin maintenance. EGF levels are significantly lower in the cerebrospinal fluid and spinal cord of patients with multiple sclerosis (MS), which probably explains remyelination failure, also because of the EGF marginal role in immunology. When repeatedly administered, EGF protects mouse spinal cord from demyelination in various experimental models of autoimmune encephalomyelitis. It would be worth further investigating the role of EGF in the pathogenesis of MS because of its multifarious effects.


1985 ◽  
Vol 110 (1_Suppla) ◽  
pp. S74
Author(s):  
R. GÄRTNER ◽  
W. GREIL ◽  
R. DEMHARTER ◽  
K. HORN

2004 ◽  
Vol 128 (1) ◽  
pp. 68-70
Author(s):  
Yun-Cai Cai ◽  
Victor Roggli ◽  
Eugene Mark ◽  
Philip T. Cagle ◽  
Armando E. Fraire

Abstract Background.—Growth factors such as transforming growth factor α (TGF-α) and epidermal growth factor receptor (EGFR) play an important role in cell proliferation. The immunohistochemical expression of these factors has been extensively studied in malignant tumors including mesothelioma. However, the comparative expression of these growth factors in mesothelioma and reactive mesothelial proliferations has been less well studied. Objective.—To evaluate the possible role of TGF-α and EGFR in the clinically important distinction between reactive mesothelial proliferations and malignant mesothelioma. Methods.—The expression of TGF-α and EGFR was studied in 39 cases of mesothelioma and 30 cases of reactive mesothelial proliferations by means of immunohistochemistry. Results.—Fourteen (70%) of 20 reactive mesothelial proliferations tested and 29 (76%) of 38 mesotheliomas tested expressed TGF-α. One (3%) of 30 reactive mesothelial proliferations and 17 (45%) of 39 mesotheliomas expressed EGFR. Conclusions.—These results suggest an up-regulation of EGFR in mesothelioma as compared with reactive mesothelial proliferations. This up-regulation further suggests a possible use of EGFR as an adjunct immunohistochemical test in the differential diagnosis of mesothelioma and reactive mesothelial proliferations.


Sign in / Sign up

Export Citation Format

Share Document