scholarly journals Application of Supervised Machine Learning for Behavioral Biomarkers of Autism Spectrum Disorder Based on Electrodermal Activity and Virtual Reality

Author(s):  
Mariano Alcañiz Raya ◽  
Irene Alice Chicchi Giglioli ◽  
Javier Marín-Morales ◽  
Juan L. Higuera-Trujillo ◽  
Elena Olmos ◽  
...  
2020 ◽  
Vol 9 (5) ◽  
pp. 1260 ◽  
Author(s):  
Mariano Alcañiz Raya ◽  
Javier Marín-Morales ◽  
Maria Eleonora Minissi ◽  
Gonzalo Teruel Garcia ◽  
Luis Abad ◽  
...  

Autism spectrum disorder (ASD) is mostly diagnosed according to behavioral symptoms in sensory, social, and motor domains. Improper motor functioning, during diagnosis, involves the qualitative evaluation of stereotyped and repetitive behaviors, while quantitative methods that classify body movements’ frequencies of children with ASD are less addressed. Recent advances in neuroscience, technology, and data analysis techniques are improving the quantitative and ecological validity methods to measure specific functioning in ASD children. On one side, cutting-edge technologies, such as cameras, sensors, and virtual reality can accurately detect and classify behavioral biomarkers, as body movements in real-life simulations. On the other, machine-learning techniques are showing the potential for identifying and classifying patients’ subgroups. Starting from these premises, three real-simulated imitation tasks have been implemented in a virtual reality system whose aim is to investigate if machine-learning methods on movement features and frequency could be useful in discriminating ASD children from children with typical neurodevelopment. In this experiment, 24 children with ASD and 25 children with typical neurodevelopment participated in a multimodal virtual reality experience, and changes in their body movements were tracked by a depth sensor camera during the presentation of visual, auditive, and olfactive stimuli. The main results showed that ASD children presented larger body movements than TD children, and that head, trunk, and feet represent the maximum classification with an accuracy of 82.98%. Regarding stimuli, visual condition showed the highest accuracy (89.36%), followed by the visual-auditive stimuli (74.47%), and visual-auditive-olfactory stimuli (70.21%). Finally, the head showed the most consistent performance along with the stimuli, from 80.85% in visual to 89.36% in visual-auditive-olfactory condition. The findings showed the feasibility of applying machine learning and virtual reality to identify body movements’ biomarkers that could contribute to improving ASD diagnosis.


2019 ◽  
Vol 8 (3) ◽  
pp. 15-18
Author(s):  
T. Lakshmi Praveena ◽  
N. V. Muthu Lakshmi

Autism appears to be a neuro developmental disorder that is visible in the early years. It is a wide-spectrum disorder that indicates that the severity and symptoms can vary from person to person. The Centre for Disease Control found that one in 68 was diagnosed with autism spectrum disorder with increasing numbers in every year. Detection of autism in adults is a cumbersome procedure because in adults, many symptoms can blend with some other mental health, motor impairment disorders so misinterpretation of actual diseases can in turn lead to a terrible life without proper diagnosis and effective treatment mechanisms. Machine learning is a powerful computer tool that supports different application domains Learning complex relationships or patterns from large datasets to draw accurate conclusions. Disease assessment can be done with predictive health data analysis and more appropriate treatment mechanisms that are now a hot area of research. Supervised learning is an important step of Machine learning which uses a rule-based approach by examining empirical data sets to build accurate predictive models. In this paper, decision tree, random forest, SVM, neural networks algorithms are applied on autism spectrum data which have been collected from UCI repository. The results of decision tree, random forest, SVM, neural networks algorithms on autism dataset are presented in this paper in an efficient manner. Analysis performed over these accurate results which will be useful to make right decisions in predicting autism spectrum disorder (ASD) at early stages. Thus, early autism intervention using machine learning techniques opens up a new way for autistic individuals to develop the potential to lead a better life by improving their behavioural and emotional skills.


2021 ◽  
Author(s):  
Mariano Alcañiz ◽  
Irene Alice Chicchi‐Giglioli ◽  
Lucía A. Carrasco‐Ribelles ◽  
Javier Marín‐Morales ◽  
Maria Eleonora Minissi ◽  
...  

2019 ◽  
Vol 6 (2) ◽  
pp. 128-146 ◽  
Author(s):  
Kayleigh K. Hyde ◽  
Marlena N. Novack ◽  
Nicholas LaHaye ◽  
Chelsea Parlett-Pelleriti ◽  
Raymond Anden ◽  
...  

2019 ◽  
Author(s):  
Sun Jae Moon ◽  
Jin Seub Hwang ◽  
Rajesh Kana ◽  
John Torous ◽  
Jung Won Kim

BACKGROUND Over the recent years, machine learning algorithms have been more widely and increasingly applied in biomedical fields. In particular, its application has been drawing more attention in the field of psychiatry, for instance, as diagnostic tests/tools for autism spectrum disorder. However, given its complexity and potential clinical implications, there is ongoing need for further research on its accuracy. OBJECTIVE The current study aims to summarize the evidence for the accuracy of use of machine learning algorithms in diagnosing autism spectrum disorder (ASD) through systematic review and meta-analysis. METHODS MEDLINE, Embase, CINAHL Complete (with OpenDissertations), PsyINFO and IEEE Xplore Digital Library databases were searched on November 28th, 2018. Studies, which used a machine learning algorithm partially or fully in classifying ASD from controls and provided accuracy measures, were included in our analysis. Bivariate random effects model was applied to the pooled data in meta-analysis. Subgroup analysis was used to investigate and resolve the source of heterogeneity between studies. True-positive, false-positive, false negative and true-negative values from individual studies were used to calculate the pooled sensitivity and specificity values, draw SROC curves, and obtain area under the curve (AUC) and partial AUC. RESULTS A total of 43 studies were included for the final analysis, of which meta-analysis was performed on 40 studies (53 samples with 12,128 participants). A structural MRI subgroup meta-analysis (12 samples with 1,776 participants) showed the sensitivity at 0.83 (95% CI-0.76 to 0.89), specificity at 0.84 (95% CI -0.74 to 0.91), and AUC/pAUC at 0.90/0.83. An fMRI/deep neural network (DNN) subgroup meta-analysis (five samples with 1,345 participants) showed the sensitivity at 0.69 (95% CI- 0.62 to 0.75), the specificity at 0.66 (95% CI -0.61 to 0.70), and AUC/pAUC at 0.71/0.67. CONCLUSIONS Machine learning algorithms that used structural MRI features in diagnosis of ASD were shown to have accuracy that is similar to currently used diagnostic tools.


2021 ◽  
Author(s):  
Munirul M. Haque ◽  
Masud Rabbani ◽  
Dipranjan Das Dipal ◽  
Md Ishrak Islam Zarif ◽  
Anik Iqbal ◽  
...  

BACKGROUND Care for children with autism spectrum disorder (ASD) can be challenging for families and medical care systems. This is especially true in Low-and-Middle-Income-countries (LMIC) like Bangladesh. To improve family-practitioner communication and developmental monitoring of children with ASD, [spell out] (mCARE) was developed. Within this study, mCARE was used to track child milestone achievement and family socio-demographic assets to inform mCARE feasibility/scalability and family-asset informed practitioner recommendations. OBJECTIVE The objectives of this paper are three-fold. First, document how mCARE can be used to monitor child milestone achievement. Second, demonstrate how advanced machine learning models can inform our understanding of milestone achievement in children with ASD. Third, describe family/child socio-demographic factors that are associated with earlier milestone achievement in children with ASD (across five machine learning models). METHODS Using mCARE collected data, this study assessed milestone achievement in 300 children with ASD from Bangladesh. In this study, we used four supervised machine learning (ML) algorithms (Decision Tree, Logistic Regression, k-Nearest Neighbors, Artificial Neural Network) and one unsupervised machine learning (K-means Clustering) to build models of milestone achievement based on family/child socio-demographic details. For analyses, the sample was randomly divided in half to train the ML models and then their accuracy was estimated based on the other half of the sample. Each model was specified for the following milestones: Brushes teeth, Asks to use the toilet, Urinates in the toilet or potty, and Buttons large buttons. RESULTS This study aimed to find a suitable machine learning algorithm for milestone prediction/achievement for children with ASD using family/child socio-demographic characteristics. For, Brushes teeth, the three supervised machine learning models met or exceeded an accuracy of 95% with Logistic Regression, KNN, and ANN as the most robust socio-demographic predictors. For Asks to use toilet, 84.00% accuracy was achieved with the KNN and ANN models. For these models, the family socio-demographic predictors of “family expenditure” and “parents’ age” accounted for most of the model variability. The last two parameters, Urinates in toilet or potty and Buttons large buttons had an accuracy of 91.00% and 76.00%, respectively, in ANN. Overall, the ANN had a higher accuracy (Above ~80% on average) among the other algorithms for all the parameters. Across the models and milestones, “family expenditure”, “family size/ type”, “living places” and “parent’s age and occupation” were the most influential family/child socio-demographic factors. CONCLUSIONS mCARE was successfully deployed in an LMIC (i.e., Bangladesh), allowing parents and care-practitioners a mechanism to share detailed information on child milestones achievement. Using advanced modeling techniques this study demonstrates how family/child socio-demographic elements can inform child milestone achievement. Specifically, families with fewer socio-demographic resources reported later milestone attainment. Developmental science theories highlight how family/systems can directly influence child development and this study provides a clear link between family resources and child developmental progress. Clinical implications for this work could include supporting the larger family system to improve child milestone achievement. CLINICALTRIAL We took the IRB from Marquette University Institutional Review Board on July 9, 2020, with the protocol number HR-1803022959, and titled “MOBILE-BASED CARE FOR CHILDREN WITH AUTISM SPECTRUM DISORDER USING REMOTE EXPERIENCE SAMPLING METHOD (MCARE)” for recruiting a total of 316 subjects, of which we recruited 300. (Details description of participants in Methods section)


2020 ◽  
Author(s):  
Haishuai Wang ◽  
Paul Avillach

BACKGROUND In the United States, about 3 million people have autism spectrum disorder (ASD), and around 1 out of 59 children are diagnosed with ASD. People with ASD have characteristic social communication deficits and repetitive behaviors. The causes of this disorder remain unknown; however, in up to 25% of cases, a genetic cause can be identified. Detecting ASD as early as possible is desirable because early detection of ASD enables timely interventions in children with ASD. Identification of ASD based on objective pathogenic mutation screening is the major first step toward early intervention and effective treatment of affected children. OBJECTIVE Recent investigation interrogated genomics data for detecting and treating autism disorders, in addition to the conventional clinical interview as a diagnostic test. Since deep neural networks perform better than shallow machine learning models on complex and high-dimensional data, in this study, we sought to apply deep learning to genetic data obtained across thousands of simplex families at risk for ASD to identify contributory mutations and to create an advanced diagnostic classifier for autism screening. METHODS After preprocessing the genomics data from the Simons Simplex Collection, we extracted top ranking common variants that may be protective or pathogenic for autism based on a chi-square test. A convolutional neural network–based diagnostic classifier was then designed using the identified significant common variants to predict autism. The performance was then compared with shallow machine learning–based classifiers and randomly selected common variants. RESULTS The selected contributory common variants were significantly enriched in chromosome X while chromosome Y was also discriminatory in determining the identification of autistic from nonautistic individuals. The ARSD, MAGEB16, and MXRA5 genes had the largest effect in the contributory variants. Thus, screening algorithms were adapted to include these common variants. The deep learning model yielded an area under the receiver operating characteristic curve of 0.955 and an accuracy of 88% for identifying autistic from nonautistic individuals. Our classifier demonstrated a significant improvement over standard autism screening tools by average 13% in terms of classification accuracy. CONCLUSIONS Common variants are informative for autism identification. Our findings also suggest that the deep learning process is a reliable method for distinguishing the diseased group from the control group based on the common variants of autism.


Sign in / Sign up

Export Citation Format

Share Document