scholarly journals Multi-modal Mapping of the Face Selective Ventral Temporal Cortex–A Group Study With Clinical Implications for ECS, ECoG, and fMRI

2021 ◽  
Vol 15 ◽  
Author(s):  
Takahiro Sanada ◽  
Christoph Kapeller ◽  
Michael Jordan ◽  
Johannes Grünwald ◽  
Takumi Mitsuhashi ◽  
...  

Face recognition is impaired in patients with prosopagnosia, which may occur as a side effect of neurosurgical procedures. Face selective regions on the ventral temporal cortex have been localized with electrical cortical stimulation (ECS), electrocorticography (ECoG), and functional magnetic resonance imagining (fMRI). This is the first group study using within-patient comparisons to validate face selective regions mapping, utilizing the aforementioned modalities. Five patients underwent surgical treatment of intractable epilepsy and joined the study. Subdural grid electrodes were implanted on their ventral temporal cortices to localize seizure foci and face selective regions as part of the functional mapping protocol. Face selective regions were identified in all patients with fMRI, four patients with ECoG, and two patients with ECS. From 177 tested electrode locations in the region of interest (ROI), which is defined by the fusiform gyrus and the inferior temporal gyrus, 54 face locations were identified by at least one modality in all patients. fMRI mapping showed the highest detection rate, revealing 70.4% for face selective locations, whereas ECoG and ECS identified 64.8 and 31.5%, respectively. Thus, 28 face locations were co-localized by at least two modalities, with detection rates of 89.3% for fMRI, 85.7% for ECoG and 53.6 % for ECS. All five patients had no face recognition deficits after surgery, even though five of the face selective locations, one obtained by ECoG and the other four by fMRI, were within 10 mm to the resected volumes. Moreover, fMRI included a quite large volume artifact on the ventral temporal cortex in the ROI from the anatomical structures of the temporal base. In conclusion, ECS was not sensitive in several patients, whereas ECoG and fMRI even showed activation within 10 mm to the resected volumes. Considering the potential signal drop-out in fMRI makes ECoG the most reliable tool to identify face selective locations in this study. A multimodal approach can improve the specificity of ECoG and fMRI, while simultaneously minimizing the number of required ECS sessions. Hence, all modalities should be considered in a clinical mapping protocol entailing combined results of co-localized face selective locations.

2020 ◽  
Vol 31 (1) ◽  
pp. 603-619 ◽  
Author(s):  
Mona Rosenke ◽  
Rick van Hoof ◽  
Job van den Hurk ◽  
Kalanit Grill-Spector ◽  
Rainer Goebel

Abstract Human visual cortex contains many retinotopic and category-specific regions. These brain regions have been the focus of a large body of functional magnetic resonance imaging research, significantly expanding our understanding of visual processing. As studying these regions requires accurate localization of their cortical location, researchers perform functional localizer scans to identify these regions in each individual. However, it is not always possible to conduct these localizer scans. Here, we developed and validated a functional region of interest (ROI) atlas of early visual and category-selective regions in human ventral and lateral occipito-temporal cortex. Results show that for the majority of functionally defined ROIs, cortex-based alignment results in lower between-subject variability compared to nonlinear volumetric alignment. Furthermore, we demonstrate that 1) the atlas accurately predicts the location of an independent dataset of ventral temporal cortex ROIs and other atlases of place selectivity, motion selectivity, and retinotopy. Next, 2) we show that the majority of voxel within our atlas is responding mostly to the labeled category in a left-out subject cross-validation, demonstrating the utility of this atlas. The functional atlas is publicly available (download.brainvoyager.com/data/visfAtlas.zip) and can help identify the location of these regions in healthy subjects as well as populations (e.g., blind people, infants) in which functional localizers cannot be run.


2009 ◽  
Vol 21 (4) ◽  
pp. 625-641 ◽  
Author(s):  
Jürgen M. Kaufmann ◽  
Stefan R. Schweinberger ◽  
A. Mike Burton

We used ERPs to investigate neural correlates of face learning. At learning, participants viewed video clips of unfamiliar people, which were presented either with or without voices providing semantic information. In a subsequent face-recognition task (four trial blocks), learned faces were repeated once per block and presented interspersed with novel faces. To disentangle face from image learning, we used different images for face repetitions. Block effects demonstrated that engaging in the face-recognition task modulated ERPs between 170 and 900 msec poststimulus onset for learned and novel faces. In addition, multiple repetitions of different exemplars of learned faces elicited an increased bilateral N250. Source localizations of this N250 for learned faces suggested activity in fusiform gyrus, similar to that found previously for N250r in repetition priming paradigms [Schweinberger, S. R., Pickering, E. C., Jentzsch, I., Burton, A. M., & Kaufmann, J. M. Event-related brain potential evidence for a response of inferior temporal cortex to familiar face repetitions. Cognitive Brain Research, 14, 398–409, 2002]. Multiple repetitions of learned faces also elicited increased central–parietal positivity between 400 and 600 msec and caused a bilateral increase of inferior–temporal negativity (>300 msec) compared with novel faces. Semantic information at learning enhanced recognition rates. Faces that had been learned with semantic information elicited somewhat less negative amplitudes between 700 and 900 msec over left inferior–temporal sites. Overall, the findings demonstrate a role of the temporal N250 ERP in the acquisition of new face representations across different images. They also suggest that, compared with visual presentation alone, additional semantic information at learning facilitates postperceptual processing in recognition but does not facilitate perceptual analysis of learned faces.


2020 ◽  
Author(s):  
D. Proklova ◽  
M.A. Goodale

AbstractAnimate and inanimate objects elicit distinct response patterns in the human ventral temporal cortex (VTC), but the exact features driving this distinction are still poorly understood. One prominent feature that distinguishes typical animals from inanimate objects and that could potentially explain the animate-inanimate distinction in the VTC is the presence of a face. In the current fMRI study, we investigated this possibility by creating a stimulus set that included animals with faces, faceless animals, and inanimate objects, carefully matched in order to minimize other visual differences. We used both searchlight-based and ROI-based representational similarity analysis (RSA) to test whether the presence of a face explains the animate-inanimate distinction in the VTC. The searchlight analysis revealed that when animals with faces were removed from the analysis, the animate-inanimate distinction almost disappeared. The ROI-based RSA revealed a similar pattern of results, but also showed that, even in the absence of faces, information about agency (a combination of animal’s ability to move and think) is present in parts of the VTC that are sensitive to animacy. Together, these analyses showed that animals with faces do elicit a stronger animate/inanimate response in the VTC, but that this effect is driven not by faces per se, or the visual features of faces, but by other factors that correlate with face presence, such as the capacity for self-movement and thought. In short, the VTC appears to treat the face as a proxy for agency, a ubiquitous feature of familiar animals.Significance StatementMany studies have shown that images of animals are processed differently from inanimate objects in the human brain, particularly in the ventral temporal cortex (VTC). However, what features drive this distinction remains unclear. One important feature that distinguishes many animals from inanimate objects is a face. Here, we used fMRI to test whether the animate/inanimate distinction is driven by the presence of faces. We found that the presence of faces did indeed boost activity related to animacy in the VTC. A more detailed analysis, however, revealed that it was the association between faces and other attributes such as the capacity for self-movement and thinking, not the faces per se, that was driving the activity we observed.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Kendrick N Kay ◽  
Jason D Yeatman

The ability to read a page of text or recognize a person's face depends on category-selective visual regions in ventral temporal cortex (VTC). To understand how these regions mediate word and face recognition, it is necessary to characterize how stimuli are represented and how this representation is used in the execution of a cognitive task. Here, we show that the response of a category-selective region in VTC can be computed as the degree to which the low-level properties of the stimulus match a category template. Moreover, we show that during execution of a task, the bottom-up representation is scaled by the intraparietal sulcus (IPS), and that the level of IPS engagement reflects the cognitive demands of the task. These results provide an account of neural processing in VTC in the form of a model that addresses both bottom-up and top-down effects and quantitatively predicts VTC responses.


2015 ◽  
Vol 112 (35) ◽  
pp. E4835-E4844 ◽  
Author(s):  
Meike Ramon ◽  
Luca Vizioli ◽  
Joan Liu-Shuang ◽  
Bruno Rossion

Despite a wealth of information provided by neuroimaging research, the neural basis of familiar face recognition in humans remains largely unknown. Here, we isolated the discriminative neural responses to unfamiliar and familiar faces by slowly increasing visual information (i.e., high-spatial frequencies) to progressively reveal faces of unfamiliar or personally familiar individuals. Activation in ventral occipitotemporal face-preferential regions increased with visual information, independently of long-term face familiarity. In contrast, medial temporal lobe structures (perirhinal cortex, amygdala, hippocampus) and anterior inferior temporal cortex responded abruptly when sufficient information for familiar face recognition was accumulated. These observations suggest that following detailed analysis of individual faces in core posterior areas of the face-processing network, familiar face recognition emerges categorically in medial temporal and anterior regions of the extended cortical face network.


2015 ◽  
Vol 114 (1) ◽  
pp. 256-263 ◽  
Author(s):  
Kai J. Miller ◽  
Dora Hermes ◽  
Nathan Witthoft ◽  
Rajesh P. N. Rao ◽  
Jeffrey G. Ojemann

The human ventral temporal cortex has regions that are known to selectively process certain categories of visual inputs; they are specialized for the content (“faces,” “places,” “tools”) and not the form (“line,” “patch”) of the image being seen. In our study, human patients with implanted electrocorticography (ECoG) electrode arrays were shown sequences of simple face and house pictures. We quantified neuronal population activity, finding robust face-selective sites on the fusiform gyrus and house-selective sites on the lingual/parahippocampal gyri. The magnitude and timing of single trials were compared between novel (“house-face”) and repeated (“face-face”) stimulus-type responses. More than half of the category-selective sites showed significantly greater total activity for novel stimulus class. Approximately half of the face-selective sites (and none of the house-selective sites) showed significantly faster latency to peak (∼50 ms) for novel stimulus class. This establishes subregions within category-selective areas that are differentially tuned to novelty in sequential context, where novel stimuli are processed faster in some regions, and with increased activity in others.


Author(s):  
Mona Rosenke ◽  
Rick van Hoof ◽  
Job van den Hurk ◽  
Kalanit Grill-Spector ◽  
Rainer Goebel

AbstractHuman visual cortex contains many retinotopic and category-specific regions. These brain regions have been the focus of a large body of functional MRI research, significantly expanding our understanding of visual processing. As studying these regions requires accurate localization of their cortical location, researchers perform functional localizer scans to identify these regions in each individual. However, it not always possible to conduct these localizer scans. Here, we developed and validated a functional region of interest atlas of early visual and category-selective regions in human ventral and lateral occipito-temporal cortex. Results show that for the majority of fROIs, cortex-based alignment results in lower between-subject variability compared to nonlinear volumetric alignment. Furthermore, we demonstrate that (1) the atlas accurately predicts the location of an independent dataset of ventral temporal cortex ROIs and other atlases of place-selectivity, motion-selectivity, and retinotopy. Next, (2) we show that the majority of voxel within our atlas are responding mostly to the labelled category in a left-out subject cross-validation, demonstrating the utility of this atlas. The functional atlas is publicly available (download.brainvoyager.com/data/visfAtlas.zip) and can help identify the location of these regions in healthy subjects as well as populations (e.g. blind people, infants) in which functional localizers cannot be run.


2010 ◽  
Vol 69 (3) ◽  
pp. 161-167 ◽  
Author(s):  
Jisien Yang ◽  
Adrian Schwaninger

Configural processing has been considered the major contributor to the face inversion effect (FIE) in face recognition. However, most researchers have only obtained the FIE with one specific ratio of configural alteration. It remains unclear whether the ratio of configural alteration itself can mediate the occurrence of the FIE. We aimed to clarify this issue by manipulating the configural information parametrically using six different ratios, ranging from 4% to 24%. Participants were asked to judge whether a pair of faces were entirely identical or different. The paired faces that were to be compared were presented either simultaneously (Experiment 1) or sequentially (Experiment 2). Both experiments revealed that the FIE was observed only when the ratio of configural alteration was in the intermediate range. These results indicate that even though the FIE has been frequently adopted as an index to examine the underlying mechanism of face processing, the emergence of the FIE is not robust with any configural alteration but dependent on the ratio of configural alteration.


Author(s):  
Reshma P ◽  
Muneer VK ◽  
Muhammed Ilyas P

Face recognition is a challenging task for the researches. It is very useful for personal verification and recognition and also it is very difficult to implement due to all different situation that a human face can be found. This system makes use of the face recognition approach for the computerized attendance marking of students or employees in the room environment without lectures intervention or the employee. This system is very efficient and requires very less maintenance compared to the traditional methods. Among existing methods PCA is the most efficient technique. In this project Holistic based approach is adapted. The system is implemented using MATLAB and provides high accuracy.


Sign in / Sign up

Export Citation Format

Share Document