scholarly journals Bottom-up and top-down computations in word- and face-selective cortex

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Kendrick N Kay ◽  
Jason D Yeatman

The ability to read a page of text or recognize a person's face depends on category-selective visual regions in ventral temporal cortex (VTC). To understand how these regions mediate word and face recognition, it is necessary to characterize how stimuli are represented and how this representation is used in the execution of a cognitive task. Here, we show that the response of a category-selective region in VTC can be computed as the degree to which the low-level properties of the stimulus match a category template. Moreover, we show that during execution of a task, the bottom-up representation is scaled by the intraparietal sulcus (IPS), and that the level of IPS engagement reflects the cognitive demands of the task. These results provide an account of neural processing in VTC in the form of a model that addresses both bottom-up and top-down effects and quantitatively predicts VTC responses.

2016 ◽  
Author(s):  
Kendrick N. Kay ◽  
Jason D. Yeatman

SummaryThe ability to read a page of text or recognize a person’s face depends on category-selective visual regions in ventral temporal cortex (VTC). To understand how these regions mediate word and face recognition, it is necessary to characterize how stimuli are represented and how this representation is used in the execution of a cognitive task. Here, we show that the response of a category-selective region in VTC can be computed as the degree to which the low-level properties of the stimulus match a category template. Moreover, we show that during execution of a task, the bottom-up representation is scaled by the intraparietal sulcus (IPS), and that the level of IPS engagement reflects the cognitive demands of the task. These results provide a unifying account of neural processing in VTC in the form of a model that addresses both bottom-up and top-down effects and quantitatively predicts VTC responses.


2019 ◽  
Vol 30 (3) ◽  
pp. 875-887
Author(s):  
Kai Hwang ◽  
James M Shine ◽  
Dillan Cellier ◽  
Mark D’Esposito

Abstract Past studies have demonstrated that flexible interactions between brain regions support a wide range of goal-directed behaviors. However, the neural mechanisms that underlie adaptive communication between brain regions are not well understood. In this study, we combined theta-burst transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging to investigate the sources of top-down biasing signals that influence task-evoked functional connectivity. Subjects viewed sequences of images of faces and buildings and were required to detect repetitions (2-back vs. 1-back) of the attended stimuli category (faces or buildings). We found that functional connectivity between ventral temporal cortex and the primary visual cortex (VC) increased during processing of task-relevant stimuli, especially during higher memory loads. Furthermore, the strength of functional connectivity was greater for correct trials. Increases in task-evoked functional connectivity strength were correlated with increases in activity in multiple frontal, parietal, and subcortical (caudate and thalamus) regions. Finally, we found that TMS to superior intraparietal sulcus (IPS), but not to primary somatosensory cortex, decreased task-specific modulation in connectivity patterns between the primary VC and the parahippocampal place area. These findings demonstrate that the human IPS is a source of top-down biasing signals that modulate task-evoked functional connectivity among task-relevant cortical regions.


2018 ◽  
Author(s):  
Ruyuan Zhang ◽  
Kendrick Kay

ABSTRACTVisual neuroscientists have long characterized attention as inducing a scaling or additive effect on fixed parametric functions describing neural responses (e.g., contrast response functions). Here, we instead propose that top-down effects are more complex and manifest in ways that depend not only on attention but also other cognitive processes involved in executing a task. To substantiate this theory, we analyze fMRI responses in human ventral temporal cortex (VTC) in a study where stimulus eccentricity and cognitive task are varied. We find that as stimuli are presented farther into the periphery, bottom-up stimulus-driven responses decline but top-down attentional enhancement increases substantially. This disproportionate enhancement of weak responses cannot be easily explained by conventional models of attention. Furthermore, we find that attentional effects depend on the specific cognitive task performed by the subject, indicating the influence of additional cognitive processes other than attention (e.g., decision-making). The effects we observe replicate in an independent experiment from the same study, and also generalize to a separate study involving different stimulus manipulations (contrast and phase coherence). Our results suggest that a quantitative understanding of top-down modulation requires more nuanced and more precise characterization of multiple cognitive factors involved in completing a perceptual task.


2019 ◽  
Vol 31 (5) ◽  
pp. 768-779 ◽  
Author(s):  
Justin Riddle ◽  
Kai Hwang ◽  
Dillan Cellier ◽  
Sofia Dhanani ◽  
Mark D'Esposito

Beta and gamma frequency neuronal oscillations have been implicated in top–down and bottom–up attention. In this study, we used rhythmic TMS to modulate ongoing beta and gamma frequency neuronal oscillations in frontal and parietal cortex while human participants performed a visual search task that manipulates bottom–up and top–down attention (single feature and conjunction search). Both task conditions will engage bottom–up attention processes, although the conjunction search condition will require more top–down attention. Gamma frequency TMS to superior precentral sulcus (sPCS) slowed saccadic RTs during both task conditions and induced a response bias to the contralateral visual field. In contrary, beta frequency TMS to sPCS and intraparietal sulcus decreased search accuracy only during the conjunction search condition that engaged more top–down attention. Furthermore, beta frequency TMS increased trial errors specifically when the target was in the ipsilateral visual field for the conjunction search condition. These results indicate that beta frequency TMS to sPCS and intraparietal sulcus disrupted top–down attention, whereas gamma frequency TMS to sPCS disrupted bottom–up, stimulus-driven attention processes. These findings provide causal evidence suggesting that beta and gamma oscillations have distinct functional roles for cognition.


2021 ◽  
Vol 15 ◽  
Author(s):  
Takahiro Sanada ◽  
Christoph Kapeller ◽  
Michael Jordan ◽  
Johannes Grünwald ◽  
Takumi Mitsuhashi ◽  
...  

Face recognition is impaired in patients with prosopagnosia, which may occur as a side effect of neurosurgical procedures. Face selective regions on the ventral temporal cortex have been localized with electrical cortical stimulation (ECS), electrocorticography (ECoG), and functional magnetic resonance imagining (fMRI). This is the first group study using within-patient comparisons to validate face selective regions mapping, utilizing the aforementioned modalities. Five patients underwent surgical treatment of intractable epilepsy and joined the study. Subdural grid electrodes were implanted on their ventral temporal cortices to localize seizure foci and face selective regions as part of the functional mapping protocol. Face selective regions were identified in all patients with fMRI, four patients with ECoG, and two patients with ECS. From 177 tested electrode locations in the region of interest (ROI), which is defined by the fusiform gyrus and the inferior temporal gyrus, 54 face locations were identified by at least one modality in all patients. fMRI mapping showed the highest detection rate, revealing 70.4% for face selective locations, whereas ECoG and ECS identified 64.8 and 31.5%, respectively. Thus, 28 face locations were co-localized by at least two modalities, with detection rates of 89.3% for fMRI, 85.7% for ECoG and 53.6 % for ECS. All five patients had no face recognition deficits after surgery, even though five of the face selective locations, one obtained by ECoG and the other four by fMRI, were within 10 mm to the resected volumes. Moreover, fMRI included a quite large volume artifact on the ventral temporal cortex in the ROI from the anatomical structures of the temporal base. In conclusion, ECS was not sensitive in several patients, whereas ECoG and fMRI even showed activation within 10 mm to the resected volumes. Considering the potential signal drop-out in fMRI makes ECoG the most reliable tool to identify face selective locations in this study. A multimodal approach can improve the specificity of ECoG and fMRI, while simultaneously minimizing the number of required ECS sessions. Hence, all modalities should be considered in a clinical mapping protocol entailing combined results of co-localized face selective locations.


2019 ◽  
Author(s):  
Nadine Dijkstra ◽  
Sander Erik Bosch ◽  
Marcel van Gerven

For decades, the extent to which visual imagery relies on similar neural mechanisms as visual perception has been a topic of debate. Here, we review recent neuroimaging studies comparing these two forms of visual experience. Their results suggest that there is large overlap in neural processing during perception and imagery: neural representations of imagined and perceived stimuli are similar in visual, parietal and frontal cortex. Furthermore, perception and imagery seem to rely on similar top-down connectivity. The most prominent difference is the absence of bottom-up processing during imagery. These findings fit well with the idea that imagery and perception rely on similar emulation or prediction processes.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Lingxi Lu ◽  
Qian Wang ◽  
Jingwei Sheng ◽  
Zhaowei Liu ◽  
Lang Qin ◽  
...  

The subjective inner experience of mental imagery is among the most ubiquitous human experiences in daily life. Elucidating the neural implementation underpinning the dynamic construction of mental imagery is critical to understanding high-order cognitive function in the human brain. Here, we applied a frequency-tagging method to isolate the top-down process of speech mental imagery from bottom-up sensory-driven activities and concurrently tracked the neural processing time scales corresponding to the two processes in human subjects. Notably, by estimating the source of the magnetoencephalography (MEG) signals, we identified isolated brain networks activated at the imagery-rate frequency. In contrast, more extensive brain regions in the auditory temporal cortex were activated at the stimulus-rate frequency. Furthermore, intracranial stereotactic electroencephalogram (sEEG) evidence confirmed the participation of the inferior frontal gyrus in generating speech mental imagery. Our results indicate that a disassociated neural network underlies the dynamic construction of speech mental imagery independent of auditory perception.


2009 ◽  
Vol 21 (6) ◽  
pp. 1135-1145 ◽  
Author(s):  
Tali Bitan ◽  
Jimmy Cheon ◽  
Dong Lu ◽  
Douglas D. Burman ◽  
James R. Booth

We examined age-related changes in the interactions among brain regions in children performing rhyming judgments on visually presented words. The difficulty of the task was manipulated by including a conflict between task-relevant (phonological) information and task-irrelevant (orthographic) information. The conflicting conditions included pairs of words that rhyme despite having different spelling patterns (jazz–has), or words that do not rhyme despite having similar spelling patterns (pint–mint). These were contrasted with nonconflicting pairs that have similar orthography and phonology (dime–lime) or different orthography and phonology (press–list). Using fMRI, we examined effective connectivity among five left hemisphere regions of interest: fusiform gyrus (FG), inferior frontal gyrus (IFG), intraparietal sulcus (IPS), lateral temporal cortex (LTC), and medial frontal gyrus (MeFG). Age-related increases were observed in the influence of the IFG and FG on the LTC, but only in conflicting conditions. These results reflect a developmental increase in the convergence of bottom–up and top–down information on the LTC. In older children, top–down control process may selectively enhance the sensitivity of the LTC to bottom–up information from the FG. This may be evident especially in situations that require selective enhancement of task-relevant versus task-irrelevant information. Altogether these results provide a direct evidence for a developmental increase in top–down control processes in language processing. The developmental increase in bottom–up processing may be secondary to the enhancement of top–down processes.


NeuroImage ◽  
2020 ◽  
Vol 218 ◽  
pp. 116964 ◽  
Author(s):  
Ru-Yuan Zhang ◽  
Kendrick Kay

2003 ◽  
Vol 15 (4) ◽  
pp. 600-609 ◽  
Author(s):  
Moshe Bar

The majority of the research related to visual recognition has so far focused on bottom-up analysis, where the input is processed in a cascade of cortical regions that analyze increasingly complex information. Gradually more studies emphasize the role of top-down facilitation in cortical analysis, but it remains something of a mystery how such processing would be initiated. After all, top-down facilitation implies that high-level information is activated earlier than some relevant lower-level information. Building on previous studies, I propose a specific mechanism for the activation of top-down facilitation during visual object recognition. The gist of this hypothesis is that a partially analyzed version of the input image (i.e., a blurred image) is projected rapidly from early visual areas directly to the prefrontal cortex (PFC). This coarse representation activates in the PFC expectations about the most likely interpretations of the input image, which are then back-projected as an “initial guess” to the temporal cortex to be integrated with the bottom-up analysis. The top-down process facilitates recognition by substantially limiting the number of object representations that need to be considered. Furthermore, such a rapid mechanism may provide critical information when a quick response is necessary.


Sign in / Sign up

Export Citation Format

Share Document