scholarly journals Exclusion of the Possibility of “False Ripples” From Ripple Band High-Frequency Oscillations Recorded From Scalp Electroencephalogram in Children With Epilepsy

2021 ◽  
Vol 15 ◽  
Author(s):  
Katsuhiro Kobayashi ◽  
Takashi Shibata ◽  
Hiroki Tsuchiya ◽  
Tomoyuki Akiyama

AimRipple-band epileptic high-frequency oscillations (HFOs) can be recorded by scalp electroencephalography (EEG), and tend to be associated with epileptic spikes. However, there is a concern that the filtration of steep waveforms such as spikes may cause spurious oscillations or “false ripples.” We excluded such possibility from at least some ripples by EEG differentiation, which, in theory, enhances high-frequency signals and does not generate spurious oscillations or ringing.MethodsThe subjects were 50 pediatric patients, and ten consecutive spikes during sleep were selected for each patient. Five hundred spike data segments were initially reviewed by two experienced electroencephalographers using consensus to identify the presence or absence of ripples in the ordinary filtered EEG and an associated spectral blob in time-frequency analysis (Session A). These EEG data were subjected to numerical differentiation (the second derivative was denoted as EEG″). The EEG″ trace of each spike data segment was shown to two other electroencephalographers who judged independently whether there were clear ripple oscillations or uncertain ripple oscillations or an absence of oscillations (Session B).ResultsIn Session A, ripples were identified in 57 spike data segments (Group A-R), but not in the other 443 data segments (Group A-N). In Session B, both reviewers identified clear ripples (strict criterion) in 11 spike data segments, all of which were in Group A-R (p < 0.0001 by Fisher’s exact test). When the extended criterion that included clear and/or uncertain ripples was used in Session B, both reviewers identified 25 spike data segments that fulfilled the criterion: 24 of these were in Group A-R (p < 0.0001).DiscussionWe have demonstrated that real ripples over scalp spikes exist in a certain proportion of patients. Ripples that were visualized consistently using both ordinary filters and the EEG″ method should be true, but failure to clarify ripples using the EEG″ method does not mean that true ripples are absent.ConclusionThe numerical differentiation of EEG data provides convincing evidence that HFOs were detected in terms of the presence of such unusually fast oscillations over the scalp and the importance of this electrophysiological phenomenon.

2018 ◽  
Vol 28 (07) ◽  
pp. 1850001 ◽  
Author(s):  
Lucia Rita Quitadamo ◽  
Roberto Mai ◽  
Francesca Gozzo ◽  
Veronica Pelliccia ◽  
Francesco Cardinale ◽  
...  

Pathological High-Frequency Oscillations (HFOs) have been recently proposed as potential biomarker of the seizure onset zone (SOZ) and have shown superior accuracy to interictal epileptiform discharges in delineating its anatomical boundaries. Characterization of HFOs is still in its infancy and this is reflected in the heterogeneity of analysis and reporting methods across studies and in clinical practice. The clinical approach to HFOs identification and quantification usually still relies on visual inspection of EEG data. In this study, we developed a pipeline for the detection and analysis of HFOs. This includes preliminary selection of the most informative channels exploiting statistical properties of the pre-ictal and ictal intracranial EEG (iEEG) time series based on spectral kurtosis, followed by wavelet-based characterization of the time–frequency properties of the signal. We performed a preliminary validation analyzing EEG data in the ripple frequency band (80–250 Hz) from six patients with drug-resistant epilepsy who underwent pre-surgical evaluation with stereo-EEG (SEEG) followed by surgical resection of pathologic brain areas, who had at least two-year positive post-surgical outcome. In this series, kurtosis-driven selection and wavelet-based detection of HFOs had average sensitivity of 81.94% and average specificity of 96.03% in identifying the HFO area which overlapped with the SOZ as defined by clinical presurgical workup. Furthermore, the kurtosis-based channel selection resulted in an average reduction in computational time of 66.60%.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Peter Höller ◽  
Eugen Trinka ◽  
Yvonne Höller

High-frequency oscillations (HFOs) in the electroencephalogram (EEG) are thought to be a promising marker for epileptogenicity. A number of automated detection algorithms have been developed for reliable analysis of invasively recorded HFOs. However, invasive recordings are not widely applicable since they bear risks and costs, and the harm of the surgical intervention of implantation needs to be weighted against the informational benefits of the invasive examination. In contrast, scalp EEG is widely available at low costs and does not bear any risks. However, the detection of HFOs on the scalp represents a challenge that was taken on so far mostly via visual detection. Visual detection of HFOs is, in turn, highly time-consuming and subjective. In this review, we discuss that automated detection algorithms for detection of HFOs on the scalp are highly warranted because the available algorithms were all developed for invasively recorded EEG and do not perform satisfactorily in scalp EEG because of the low signal-to-noise ratio and numerous artefacts as well as physiological activity that obscures the tiny phenomena in the high-frequency range.


2022 ◽  
Vol 73 ◽  
pp. 103418
Author(s):  
Fatma Krikid ◽  
Ahmad Karfoul ◽  
Sahbi Chaibi ◽  
Amar Kachenoura ◽  
Anca Nica ◽  
...  

2012 ◽  
Vol 108 (8) ◽  
pp. 2134-2143 ◽  
Author(s):  
Vitaliy Marchenko ◽  
Michael G. Z. Ghali ◽  
Robert F. Rogers

Fast oscillations are ubiquitous throughout the mammalian central nervous system and are especially prominent in respiratory motor outputs, including the phrenic nerves (PhNs). Some investigators have argued for an epiphenomenological basis for PhN high-frequency oscillations because phrenic motoneurons (PhMNs) firing at these same frequencies have never been recorded, although their existence has never been tested systematically. Experiments were performed on 18 paralyzed, unanesthetized, decerebrate adult rats in which whole PhN and individual PhMN activity were recorded. A novel method for evaluating unit-nerve time-frequency coherence was applied to PhMN and PhN recordings. PhMNs were classified according to their maximal firing rate as high, medium, and low frequency, corresponding to the analogous bands in PhN spectra. For the first time, we report the existence of PhMNs firing at rates corresponding to high-frequency oscillations during eupneic motor output. The majority of PhMNs fired only during inspiration, but a small subpopulation possessed tonic activity throughout all phases of respiration. Significant time-varying PhMN-PhN coherence was observed for all PhMN classes. High-frequency, early-recruited units had significantly more consistent onset times than low-frequency, early/middle-recruited and medium-frequency, middle/late-recruited PhMNs. High- and medium-frequency PhMNs had significantly more consistent offset times than low-frequency units. This suggests that startup and termination of PhMNs with higher firing rates are more precisely controlled, which may contribute to the greater PhMN-PhN coherence at the beginning and end of inspiration. Our findings provide evidence that near-synchronous discharge of PhMNs firing at high rates may underlie fast oscillations in PhN discharge.


2006 ◽  
Vol 291 (5) ◽  
pp. R1414-R1429 ◽  
Author(s):  
Vitaliy Marchenko ◽  
Robert F. Rogers

Respiratory motor outputs contain medium-(MFO) and high-frequency oscillations (HFO) that are much faster than the fundamental breathing rhythm. However, the associated changes in power spectral characteristics of the major respiratory outputs in unanesthetized animals during the transition from normal eupneic breathing to hypoxic gasping have not been well characterized. Experiments were performed on nine unanesthetized, chemo- and barodenervated, decerebrate adult rats, in which asphyxia elicited hyperpnea, followed by apnea and gasping. A gated fast Fourier transform (FFT) analysis and a novel time-frequency representation (TFR) analysis were developed and applied to whole phrenic and to medial branch hypoglossal nerve recordings. Our results revealed one MFO and one HFO peak in the phrenic output during eupnea, where HFO was prominent in the first two-thirds of the burst and MFO was prominent in the latter two-thirds of the burst. The hypoglossal activity contained broadband power distribution with several distinct peaks. During gasping, two high-amplitude MFO peaks were present in phrenic activity, and this state was characterized by a conspicuous loss in HFO power. Hypoglossal activity showed a significant reduction in power and a shift in its distribution toward lower frequencies during gasping. TFR analysis of phrenic activity revealed the increasing importance of an initial low-frequency “start-up” burst that grew in relative intensity as hypoxic conditions persisted. Significant changes in MFO and HFO rhythm generation during the transition from eupnea to gasping presumably reflect a reconfiguration of the respiratory network and/or alterations in signal processing by the circuitry associated with the two motor pools.


Brain ◽  
2006 ◽  
Vol 130 (1) ◽  
pp. 198-205 ◽  
Author(s):  
Z. Cimatti ◽  
D. P Schwartz ◽  
F. Bourdain ◽  
S. Meunier ◽  
J.-P. Bleton ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e94381 ◽  
Author(s):  
Sergey Burnos ◽  
Peter Hilfiker ◽  
Oguzkan Sürücü ◽  
Felix Scholkmann ◽  
Niklaus Krayenbühl ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Hanan El Shakankiry ◽  
Susan T. Arnold

IntroductionDespite all the efforts for optimizing epilepsy management in children over the past decades, there is no clear consensus regarding whether to treat or not to treat epileptiform discharges (EDs) after a first unprovoked seizure or the optimal duration of therapy with anti-seizure medication (ASM). It is therefore highly needed to find markers on scalp electroencephalogram (EEG) that can help identify pathological EEG discharges that require treatment.Aim of the studyThis retrospective study aimed to identify whether the coexistence of ripples/high-frequency oscillations (HFOs) with interictal EDs (IEDs) in routinely acquired scalp EEG is associated with a higher risk of seizure recurrence and could be used as a prognostic marker.Methods100 children presenting with new onset seizure to Children’s Medical Center- Dallas during 2015–2016, who were not on ASM and had focal EDs on an awake and sleep EEG recorded with sample frequency of 500 HZ, were randomly identified by database review. EEGs were analyzed blinded to the data of the patients. HFOs were visually identified using review parameters including expanded time base and adjusted filter settings.ResultsThe average age of patients was 6.3 years (±4.35 SD). HFOs were visually identified in 19% of the studied patients with an inter-rater reliability of 99% for HFO negative discharges and 78% agreement for identification of HFOs. HFOs were identified more often in the younger age group; however, they were identified in 11% of patients >5 years old. They were more frequently associated with spikes than with sharp waves and more often with higher amplitude EDs. Patients with HFOs were more likely to have a recurrence of seizures in the year after the first seizure (P < 0.05) and to continue to have seizures after 2 years (P < 0.0001). There was no statistically significant difference between the two groups with regards to continuing ASM after 2 years.ConclusionIncluding analysis for HFOs in routine EEG interpretation may increase the yield of the study and help guide the decision to either start or discontinue ASM. In the future, this may also help to identify pathological discharges with deleterious effects on the growing brain and set a new target for the management of epilepsy.


Sign in / Sign up

Export Citation Format

Share Document