scholarly journals The Effect of Cognitive Load on the Retrieval of Long-Term Memory: An fMRI Study

2021 ◽  
Vol 15 ◽  
Author(s):  
Minoo Sisakhti ◽  
Perminder S. Sachdev ◽  
Seyed Amir Hossein Batouli

One of the less well-understood aspects of memory function is the mechanism by which the brain responds to an increasing load of memory, either during encoding or retrieval. Identifying the brain structures which manage this increasing cognitive demand would enhance our knowledge of human memory. Despite numerous studies about the effect of cognitive loads on working memory processes, whether these can be applied to long-term memory processes is unclear. We asked 32 healthy young volunteers to memorize all possible details of 24 images over a 12-day period ending 2 days before the fMRI scan. The images were of 12 categories relevant to daily events, with each category including a high and a low load image. Behavioral assessments on a separate group of participants (#22) provided the average loads of the images. The participants had to retrieve these previously memorized images during the fMRI scan in 15 s, with their eyes closed. We observed seven brain structures showing the highest activation with increasing load of the retrieved images, viz. parahippocampus, cerebellum, superior lateral occipital, fusiform and lingual gyri, precuneus, and posterior cingulate gyrus. Some structures showed reduced activation when retrieving higher load images, such as the anterior cingulate, insula, and supramarginal and postcentral gyri. The findings of this study revealed that the mechanism by which a difficult-to-retrieve memory is handled is mainly by elevating the activation of the responsible brain areas and not by getting other brain regions involved, which is a help to better understand the LTM retrieval process in the human brain.

2010 ◽  
Vol 24 (4) ◽  
pp. 249-252 ◽  
Author(s):  
Márk Molnár ◽  
Roland Boha ◽  
Balázs Czigler ◽  
Zsófia Anna Gaál

This review surveys relevant and recent data of the pertinent literature regarding the acute effect of alcohol on various kinds of memory processes with special emphasis on working memory. The characteristics of different types of long-term memory (LTM) and short-term memory (STM) processes are summarized with an attempt to relate these to various structures in the brain. LTM is typically impaired by chronic alcohol intake but according to some data a single dose of ethanol may have long lasting effects if administered at a critically important age. The most commonly seen deleterious acute effect of alcohol to STM appears following large doses of ethanol in conditions of “binge drinking” causing the “blackout” phenomenon. However, with the application of various techniques and well-structured behavioral paradigms it is possible to detect, albeit occasionally, subtle changes of cognitive processes even as a result of a low dose of alcohol. These data may be important for the consideration of legal consequences of low-dose ethanol intake in conditions such as driving, etc.


Author(s):  
Kinga K. Borowicz-Reutt ◽  
Monika Banach ◽  
Monika Rudkowska ◽  
Anna Stachniuk

Abstract Background Due to blocking β-receptors, and potassium KCNH2 channels, sotalol may influence seizure phenomena. In the previous study, we have shown that sotalol potentiated the antielectroshock action of phenytoin and valproate in mice. Materials and methods As a continuation of previous experiments, we examined the effect of sotalol on the action of four chosen second-generation antiepileptic drugs (oxcarbazepine, lamotrigine, pregabalin, and topiramate) against the maximal electroshock in mice. Undesired effects were evaluated in the chimney test (motor impairment) and step-through passive-avoidance task (long-term memory deficits). Finally, brain concentrations of antiepileptics were determined by fluorescence polarization immunoassay, while those of sotalol by liquid chromatography–mass spectrometry. Results Sotalol at doses of up to 100 mg/kg did not affect the electroconvulsive threshold. Applied at doses of 80–100 mg/kg, sotalol did not affect the antielectroshock action of oxcarbazepine, lamotrigine, pregabalin, or topiramate. Sotalol alone and in combinations with antiepileptics impaired neither motor performance nor long-term memory. Finally, sotalol significantly decreased the brain concentrations of lamotrigine and increased those of oxcarbazepine and topiramate. Pharmacokinetic interactions, however, did not influence the final antielectroshock effects of above-mentioned drug combinations. On the other hand, the brain concentrations of sotalol were not changed by second-generation antiepileptics used in this study. Conclusion Sotalol did not reduce the antielectroshock action of four second-generation antiepileptic drugs examined in this study. Therefore, this antidepressant drug should not interfere with antiseizure effects of lamotrigine, oxcarbazepine, pregabalin, and topiramate in patients with epilepsy. To draw final conclusions, our preclinical data should still be confirmed in other experimental models and clinical conditions.


2021 ◽  
pp. 174702182110105
Author(s):  
Spencer Talbot ◽  
Todor Gerdjikov ◽  
Carlo De Lillo

Assessing variations in cognitive function between humans and animals is vital for understanding the idiosyncrasies of human cognition and for refining animal models of human brain function and disease. We determined memory functions deployed by mice and humans to support foraging with a search task acting as a test battery. Mice searched for food from the top of poles within an open-arena. Poles were divided into groups based on visual cues and baited according to different schedules. White and black poles were baited in alternate trials. Striped poles were never baited. The requirement of the task was to find all baits in each trial. Mice’s foraging efficiency, defined as the number of poles visited before all baits were retrieved, improved with practice. Mice learnt to avoid visiting un-baited poles across trials (Long-term memory) and revisits to poles within each trial (Working memory). Humans tested with a virtual-reality version of the task outperformed mice in foraging efficiency, working memory and exploitation of the temporal pattern of rewards across trials. Moreover, humans, but not mice, reduced the number of possible movement sequences used to search the set of poles. For these measures interspecies differences were maintained throughout three weeks of testing. By contrast, long-term-memory for never-rewarded poles was similar in mice and humans after the first week of testing. These results indicate that human cognitive functions relying upon archaic brain structures may be adequately modelled in mice. Conversely, modelling in mice fluid skills likely to have developed specifically in primates, requires caution.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Ari Dienel ◽  
Remya A Veettil ◽  
Kanako Matsumura ◽  
Peeyush Kumar T. ◽  
Spiros Blackburn ◽  
...  

Subarachnoid hemorrhage induces neuronal apoptosis which causes acute and long-term memory deficits. Ourhypothesis is that agonism of α7-acetylcholine receptors attenuates neuronal apoptosis and improves memorydeficits in SAH mice. Mice were randomly assigned into the experimental groups. One cohort was euthanizedone day after SAH to assess neuronal apoptosis and signaling pathways. A second cohort survived for 30 dayspost-SAH to test long-term memory function. Inhibitors and an α7-acetylcholine receptor knockout mouse wereused. Neurobehavioral performance was assessed on days 1-3, 5, 7, and 23-28. All outcomes were performedand all data was analyzed by a blinded investigator. The α7-acetylcholine receptor agonist prevented neuronalapoptosis and improved acute memory deficits caused by SAH via activation of the PI3K/Akt pathway in neurons.Agonism of the α7-acetylcholine receptor was beneficial in both male and female mice, although the protectionin females was significantly better than in male mice. α7-acetylcholine receptor agonism did not provide anybenefit in α7-acetylcholine receptor knockout mice subjected to SAH. Treatment with the α7-acetylcholinereceptor agonist for 3 days after SAH led to improved working memory one month after SAH suggesting thatacutely improving neuronal survival can have long-lasting benefits. The α7-acetylcholine receptor may be atherapeutic target for SAH which can promote neuronal survival acutely after SAH, but also confer long-lastingmemory benefits. The findings of this study support the α7-acetylcholine receptor as a treatment target whichmay attenuate the long-term memory deficits which SAH patients suffer from.


2020 ◽  
Vol 44 (3) ◽  
pp. 326-332
Author(s):  
Audreaiona Waters ◽  
Liye Zou ◽  
Myungjin Jung ◽  
Qian Yu ◽  
Jingyuan Lin ◽  
...  

Objective: Sustained attention is critical for various activities of daily living, including engaging in health-enhancing behaviors and inhibition of health compromising behaviors. Sustained attention activates neural networks involved in episodic memory function, a critical cognition for healthy living. Acute exercise has been shown to activate these same neural networks. Thus, it is plausible that engaging in a sustained attention task and engaging in a bout of acute exercise may have an additive effect in enhancing memory function, which was the purpose of this experiment. Methods: 23 young adults (Mage = 20.7 years) completed 2 visits, with each visit occurring approximately 24 hours apart, in a counterbalanced order, including: (1) acute exercise with sustained attention, and (2) sustained attention only. Memory was assessed using a word-list paradigm and included a short- and long-term memory assessment. Sustained attention was induced via a sustained attention to response task (SART). Acute exercise involved a 15-minute bout of moderate-intensity exercise. Results: Short-term memory performance was significantly greater than long-term memory, Mdiff = 1.86, p < .001, and short-term memory for Exercise with Sustained Attention was significantly greater than short-term memory for Sustained Attention Only, Mdiff = 1.50, p = .01. Conclusion: Engaging in an acute bout of exercise before a sustained attention task additively influenced short-term memory function.


2020 ◽  
Vol 43 (1) ◽  
pp. 297-314 ◽  
Author(s):  
Josué Haubrich ◽  
Matteo Bernabo ◽  
Andrew G. Baker ◽  
Karim Nader

An enduring problem in neuroscience is determining whether cases of amnesia result from eradication of the memory trace (storage impairment) or if the trace is present but inaccessible (retrieval impairment). The most direct approach to resolving this question is to quantify changes in the brain mechanisms of long-term memory (BM-LTM). This approach argues that if the amnesia is due to a retrieval failure, BM-LTM should remain at levels comparable to trained, unimpaired animals. Conversely, if memories are erased, BM-LTM should be reduced to resemble untrained levels. Here we review the use of BM-LTM in a number of studies that induced amnesia by targeting memory maintenance or reconsolidation. The literature strongly suggests that such amnesia is due to storage rather than retrieval impairments. We also describe the shortcomings of the purely behavioral protocol that purports to show recovery from amnesia as a method of understanding the nature of amnesia.


Author(s):  
Mathias Scharinger ◽  
William J. Idsardi ◽  
Samantha Poe

AbstractVowel harmony is a phonotactic principle that requires adjacent vowels to agree in certain vowel features. Phonological theory considers this principle to be represented in one's native grammar, but its abstractness and perceptual consequences remain a matter of debate. In this paper, we are interested in the brain's response to violations of harmony in Turkish. For this purpose, we test two acoustically close and two acoustically distant vowel pairs in Turkish, involving different kinds of harmony violations. Our measure is the Mismatch Negativity (MMN), an automatic change detection response of the brain that has previously been applied for the study of native phoneme representations in a variety of languages. The results of our experiment support the view that vowel harmony is a phonological principle with a language-specific long-term memory representation. Asymmetries in MMN responses support a phonological analysis of the pattern of results, but do not provide evidence for a pure acoustic or a pure probabilistic approach. Phonological analyses are given within Optimality Theory (OT) and within an underspecification account.


Author(s):  
Lia Almeida Mapurunga ◽  
Elcyana Bezerra Elcyana Bezerra Carvalho

A neurociência é uma ciência natural que estuda a função e a estrutura, que compõem o cérebro. A educação, embora tenha outra natureza, tem tido muitos benefícios com as contribuições que a neurociência tem para oferecer. Como o cérebro aprende e por que aprende traz para o ensino o objetivo e a função de criar condições (entre estratégias, recursos e adequação do meio), para que ocorra a aprendizagem. E, para que essa ocorra, é necessário que as funções mentais superiores, como a memória, estejam envolvidas. O objetivo deste estudo consiste em fazer uma revisão de literatura para conhecer a função da memória de longo prazo na aprendizagem, analisar os mecanismos neurobiológicos, que ocorrem durante esse processo e algumas estratégias de aprendizagem, que se utilizam da memória como recurso. Para isso, foi realizado no período de agosto a outubro de 2016, um levantamento bibliográfico nas bases de dados Scielo, Capes, Bireme e Google Acadêmico, buscando artigos científicos, que poderiam trazer alguma contribuição na construção dessa pesquisa. Foram selecionados, preferencialmente, os que continham enfoque na relação entre aprendizagem e memória, tanto na perspectiva da neurociência, quanto da psicologia cognitiva, trazendo argumentos que pudessem  comprovar o entendimento das estratégias de aprendizagem, a partir da memória de longo prazo. Também foram selecionados livros que apresentavam apoio às temáticas discorridas para esse trabalho, possibilitando essa relação. Os resultados apontam que estratégias de aprendizagens, que utilizam a memória, produzem efeitos positivos para a retenção de longo prazo.Palavras-chave: Aprendizagem. Neurociências. Estratégias de Aprendizagem.AbstractNeuroscience is a natural science that studies the function and structure that forms the brain. Although education has another nature, it has had many benefits from the contributions that neuroscience has to offer. How the brain learns and why it learns brings to teaching the intent and function to create conditions (among strategies, resources and suitability to the environment) so that learning can happen. And, for it to occur, it is  necessary that higher mental functions, such as memory, beinvolved. The purpose of this study is to do a literature review to get to know the function of long-term memory on the learning process, to analyze the neurobiological mechanisms that happen during that process, and some learning strategies that use memory as a resource. Therefore a bibliographical survey was conducted at the databases Scielo, Capes, Bireme and Academic Google, from August to October 2016, searching for scientific articles that could contribute somehow on the construction of this research. The articles that used the neuroscience perspective or the cognitive psychology to focus on the relationship  between learning and memory were chosen, preferentially those whose arguments could prove the  learning strategies understanding about he long-term memory. Books supporting the themes discussed for this work were also selected, creating, therefore, a relationship. The results show that learning strategies that use memory have positive effects for long-term retention.Keywords: Learning. Neuroscience. Learning Strategies.


Sign in / Sign up

Export Citation Format

Share Document