scholarly journals Multi-Scale Graph Representation Learning for Autism Identification With Functional MRI

2022 ◽  
Vol 15 ◽  
Author(s):  
Ying Chu ◽  
Guangyu Wang ◽  
Liang Cao ◽  
Lishan Qiao ◽  
Mingxia Liu

Resting-state functional MRI (rs-fMRI) has been widely used for the early diagnosis of autism spectrum disorder (ASD). With rs-fMRI, the functional connectivity networks (FCNs) are usually constructed for representing each subject, with each element representing the pairwise relationship between brain region-of-interests (ROIs). Previous studies often first extract handcrafted network features (such as node degree and clustering coefficient) from FCNs and then construct a prediction model for ASD diagnosis, which largely requires expert knowledge. Graph convolutional networks (GCNs) have recently been employed to jointly perform FCNs feature extraction and ASD identification in a data-driven manner. However, existing studies tend to focus on the single-scale topology of FCNs by using one single atlas for ROI partition, thus ignoring potential complementary topology information of FCNs at different spatial scales. In this paper, we develop a multi-scale graph representation learning (MGRL) framework for rs-fMRI based ASD diagnosis. The MGRL consists of three major components: (1) multi-scale FCNs construction using multiple brain atlases for ROI partition, (2) FCNs representation learning via multi-scale GCNs, and (3) multi-scale feature fusion and classification for ASD diagnosis. The proposed MGRL is evaluated on 184 subjects from the public Autism Brain Imaging Data Exchange (ABIDE) database with rs-fMRI scans. Experimental results suggest the efficacy of our MGRL in FCN feature extraction and ASD identification, compared with several state-of-the-art methods.

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Zhiyue Yan ◽  
Wenming Cao ◽  
Jianhua Ji

AbstractWe focus on the problem of predicting social media user’s future behavior and consider it as a graph node binary classification task. Existing works use graph representation learning methods to give each node an embedding vector, then update the node representations by designing different information passing and aggregation mechanisms, like GCN or GAT methods. In this paper, we follow the fact that social media users have influence on their neighbor area, and extract subgraph structures from real-world social networks. We propose an encoder–decoder architecture based on graph U-Net, known as the graph U-Net+. In order to improve the feature extraction capability in convolutional process and eliminate the effect of over-smoothing problem, we introduce the bilinear information aggregator and NodeNorm normalization approaches into both encoding and decoding blocks. We reuse four datasets from DeepInf and extensive experimental results demonstrate that our methods achieve better performance than previous models.


Author(s):  
Ming Jin ◽  
Yizhen Zheng ◽  
Yuan-Fang Li ◽  
Chen Gong ◽  
Chuan Zhou ◽  
...  

Graph representation learning plays a vital role in processing graph-structured data. However, prior arts on graph representation learning heavily rely on labeling information. To overcome this problem, inspired by the recent success of graph contrastive learning and Siamese networks in visual representation learning, we propose a novel self-supervised approach in this paper to learn node representations by enhancing Siamese self-distillation with multi-scale contrastive learning. Specifically, we first generate two augmented views from the input graph based on local and global perspectives. Then, we employ two objectives called cross-view and cross-network contrastiveness to maximize the agreement between node representations across different views and networks. To demonstrate the effectiveness of our approach, we perform empirical experiments on five real-world datasets. Our method not only achieves new state-of-the-art results but also surpasses some semi-supervised counterparts by large margins. Code is made available at https://github.com/GRAND-Lab/MERIT


2021 ◽  
Vol 13 (3) ◽  
pp. 526
Author(s):  
Shengliang Pu ◽  
Yuanfeng Wu ◽  
Xu Sun ◽  
Xiaotong Sun

The nascent graph representation learning has shown superiority for resolving graph data. Compared to conventional convolutional neural networks, graph-based deep learning has the advantages of illustrating class boundaries and modeling feature relationships. Faced with hyperspectral image (HSI) classification, the priority problem might be how to convert hyperspectral data into irregular domains from regular grids. In this regard, we present a novel method that performs the localized graph convolutional filtering on HSIs based on spectral graph theory. First, we conducted principal component analysis (PCA) preprocessing to create localized hyperspectral data cubes with unsupervised feature reduction. These feature cubes combined with localized adjacent matrices were fed into the popular graph convolution network in a standard supervised learning paradigm. Finally, we succeeded in analyzing diversified land covers by considering local graph structure with graph convolutional filtering. Experiments on real hyperspectral datasets demonstrated that the presented method offers promising classification performance compared with other popular competitors.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2111
Author(s):  
Bo-Wei Zhao ◽  
Zhu-Hong You ◽  
Lun Hu ◽  
Zhen-Hao Guo ◽  
Lei Wang ◽  
...  

Identification of drug-target interactions (DTIs) is a significant step in the drug discovery or repositioning process. Compared with the time-consuming and labor-intensive in vivo experimental methods, the computational models can provide high-quality DTI candidates in an instant. In this study, we propose a novel method called LGDTI to predict DTIs based on large-scale graph representation learning. LGDTI can capture the local and global structural information of the graph. Specifically, the first-order neighbor information of nodes can be aggregated by the graph convolutional network (GCN); on the other hand, the high-order neighbor information of nodes can be learned by the graph embedding method called DeepWalk. Finally, the two kinds of feature are fed into the random forest classifier to train and predict potential DTIs. The results show that our method obtained area under the receiver operating characteristic curve (AUROC) of 0.9455 and area under the precision-recall curve (AUPR) of 0.9491 under 5-fold cross-validation. Moreover, we compare the presented method with some existing state-of-the-art methods. These results imply that LGDTI can efficiently and robustly capture undiscovered DTIs. Moreover, the proposed model is expected to bring new inspiration and provide novel perspectives to relevant researchers.


Sign in / Sign up

Export Citation Format

Share Document