scholarly journals Inhibition of GABAergic Neurons and Excitation of Glutamatergic Neurons in the Ventrolateral Periaqueductal Gray Participate in Electroacupuncture Analgesia Mediated by Cannabinoid Receptor

2019 ◽  
Vol 13 ◽  
Author(s):  
He Zhu ◽  
Hong-Chun Xiang ◽  
Hong-Ping Li ◽  
Li-Xue Lin ◽  
Xue-Fei Hu ◽  
...  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Vijay K. Samineni ◽  
Jose G. Grajales-Reyes ◽  
Saranya S. Sundaram ◽  
Judy J. Yoo ◽  
Robert W. Gereau

Abstract Itch is a distinct aversive sensation that elicits a strong urge to scratch. Despite recent advances in our understanding of the peripheral basis of itch, we know very little regarding how central neural circuits modulate acute and chronic itch processing. Here we establish the causal contributions of defined periaqueductal gray (PAG) neuronal populations in itch modulation in mice. Chemogenetic manipulations demonstrate bidirectional modulation of scratching by neurons in the PAG. Fiber photometry studies show that activity of GABAergic and glutamatergic neurons in the PAG is modulated in an opposing manner during chloroquine-evoked scratching. Furthermore, activation of PAG GABAergic neurons or inhibition of glutamatergic neurons resulted in attenuation of scratching in both acute and chronic pruritis. Surprisingly, PAG GABAergic neurons, but not glutamatergic neurons, may encode the aversive component of itch. Thus, the PAG represents a neuromodulatory hub that regulates both the sensory and affective aspects of acute and chronic itch.


2020 ◽  
Vol 132 (5) ◽  
pp. 1175-1196
Author(s):  
Weiwei Yin ◽  
Lisheng Mei ◽  
Tingting Sun ◽  
Yuping Wang ◽  
Jie Li ◽  
...  

Abstract Background The mechanisms underlying depression-associated pain remain poorly understood. Using a mouse model of depression, the authors hypothesized that the central amygdala–periaqueductal gray circuitry is involved in pathologic nociception associated with depressive states. Methods The authors used chronic restraint stress to create a mouse model of nociception with depressive-like behaviors. They then used retrograde tracing strategies to dissect the pathway from the central nucleus of the amygdala to the ventrolateral periaqueductal gray. The authors performed optogenetic and chemogenetic experiments to manipulate the activity of this pathway to explore its roles for nociception. Results The authors found that γ-aminobutyric acid–mediated (GABAergic) neurons from the central amygdala project onto GABAergic neurons of the ventrolateral periaqueductal gray, which, in turn, locally innervate their adjacent glutamatergic neurons. After chronic restraint stress, male mice displayed reliable nociception (control, mean ± SD: 0.34 ± 0.11 g, n = 7 mice; chronic restraint stress, 0.18 ± 0.11 g, n = 9 mice, P = 0.011). Comparable nociception phenotypes were observed in female mice. After chronic restraint stress, increased circuit activity was generated by disinhibition of glutamatergic neurons of the ventrolateral periaqueductal gray by local GABAergic interneurons via receiving enhanced central amygdala GABAergic inputs. Inhibition of this circuit increased nociception in chronic restraint stress mice (median [25th, 75th percentiles]: 0.16 [0.16, 0.16] g to 0.07 [0.04, 0.16] g, n = 7 mice per group, P < 0.001). In contrast, activation of this pathway reduced nociception (mean ± SD: 0.16 ± 0.08 g to 0.34 ± 0.13 g, n = 7 mice per group, P < 0.001). Conclusions These findings indicate that the central amygdala–ventrolateral periaqueductal gray pathway may mediate some aspects of pain symptoms under depression conditions. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


2018 ◽  
Author(s):  
Vijay K Samineni ◽  
Jose G Grajales-Reyes ◽  
Saranya S Sundaram ◽  
Robert W Gereau

Itch is a distinct aversive sensation that elicits a strong urge to scratch. Despite recent advances in our understanding of the peripheral basis of itch, we know very little regarding how central neural circuits modulate acute and chronic itch processing. Here we establish the causal contributions of defined periaqueductal gray (PAG) neuronal populations in itch modulation. Chemogenetic manipulations demonstrate bidirectional modulation of scratching by neurons in the PAG. Fiber photometry studies show that activity of GABAergic and glutamatergic neurons in the PAG is modulated in an opposing manner during chloroquine-evoked scratching. Furthermore, activation of PAG GABAergic neurons or inhibition of glutamatergic neurons resulted in attenuation of scratching in both acute and chronic pruritis. Surprisingly, PAG GABAergic neurons, but not glutamatergic neurons, seem to encode the aversive component of itch. Thus, the PAG represents a neuromodulatory hub that regulates both the sensory and affective aspects of acute and chronic itch.


2021 ◽  
Vol 137 ◽  
pp. 202-214
Author(s):  
Dan Wang ◽  
Wentao Wang ◽  
Shujun Jiang ◽  
He Ma ◽  
Haifeng Lian ◽  
...  

Neuroreport ◽  
2016 ◽  
Vol 27 (8) ◽  
pp. 610-616 ◽  
Author(s):  
Hua Liu ◽  
Fang Li ◽  
Chunyan Wang ◽  
Zhiqiang Su

2007 ◽  
Vol 97 (4) ◽  
pp. 2580-2589 ◽  
Author(s):  
Elisa L. Hill ◽  
Thierry Gallopin ◽  
Isabelle Férézou ◽  
Bruno Cauli ◽  
Jean Rossier ◽  
...  

The cannabinoid receptor CB1 is found in abundance in brain neurons, whereas CB2 is essentially expressed outside the brain. In the neocortex, CB1 is observed predominantly on large cholecystokinin (CCK)-expressing interneurons. However, physiological evidence suggests that functional CB1 are present on other neocortical neuronal types. We investigated the expression of CB1 and CB2 in identified neurons of rat neocortical slices using single-cell RT-PCR. We found that 63% of somatostatin (SST)-expressing and 69% of vasoactive intestinal polypeptide (VIP)-expressing interneurons co-expressed CB1. As much as 49% of pyramidal neurons expressed CB1. In contrast, CB2 was observed in a small proportion of neocortical neurons. We performed whole cell recordings of pyramidal neurons to corroborate our molecular findings. Inhibitory postsynaptic currents (IPSCs) induced by a mixed muscarinic/nicotinic cholinergic agonist showed depolarization-induced suppression of inhibition and were decreased by the CB1 agonist WIN-55212-2 (WIN-2), suggesting that interneurons excited by cholinergic agonists (mainly SST and VIP neurons) possess CB1. IPSCs elicited by a nicotinic receptor agonist were also reduced in the presence of WIN-2, suggesting that neurons excited by nicotinic agonists (mainly VIP neurons) indeed possess CB1. WIN-2 largely decreased excitatory postsynaptic currents evoked by intracortical electrical stimulation, pointing at the presence of CB1 on glutamatergic pyramidal neurons. All WIN-2 effects were strongly reduced by the CB1 antagonist AM 251. We conclude that CB1 is expressed in various neocortical neuronal populations, including glutamatergic neurons. Our combined molecular and physiological data suggest that CB1 widely mediates endocannabinoid effects on glutamatergic and GABAergic transmission to modulate cortical networks.


2016 ◽  
Vol 2016 ◽  
pp. 1-20 ◽  
Author(s):  
Fenxia Yan ◽  
Zilong Gao ◽  
Pin Chen ◽  
Li Huang ◽  
Dangui Wang ◽  
...  

Neural plasticity is associated with memory formation. The coordinated refinement and interaction between cortical glutamatergic and GABAergic neurons remain elusive in associative memory, which we examine in a mouse model of associative learning. In the mice that show odorant-induced whisker motion after pairing whisker and odor stimulations, the barrel cortical glutamatergic and GABAergic neurons are recruited to encode the newly learnt odor signal alongside the innate whisker signal. These glutamatergic neurons are functionally upregulated, and GABAergic neurons are refined in a homeostatic manner. The mutual innervations between these glutamatergic and GABAergic neurons are upregulated. The analyses by high throughput sequencing show that certain microRNAs related to regulating synapses and neurons are involved in this cross-modal reflex. Thus, the coactivation of the sensory cortices through epigenetic processes recruits their glutamatergic and GABAergic neurons to be the associative memory cells as well as drive their coordinated refinements toward the optimal state for the storage of the associated signals.


Sign in / Sign up

Export Citation Format

Share Document