chronic itch
Recently Published Documents





2022 ◽  
Vol 12 ◽  
Wen Wang ◽  
Qiaoyun Li ◽  
Zhongqiu Zhao ◽  
Yutong Liu ◽  
Yi Wang ◽  

Paeonol is a bioactive phenol presents mainly in Paeonia suffruticosa Andr. (Paeoniaceae), Paeonia lactiflora Pall., and Dioscorea japonica Thunb. (Dioscoreaceae), harboring various pharmacological activities including anti-inflammatory, antioxidant, immune regulatory activity and reverse chemoresistance. Recent reports revealed paeonol exhibited good effects on chronic dermatitis, such as atopic dermatitis (AD) and psoriasis. However, whether paeonol is effective for dry skin disease and its mechanism of action still remain unclear. In this study, we analysed the effects of paeonol on a mouse model of dry skin treated with acetone-ether-water (AEW), which showed impressive activities in reducing scratching behavior and skin inflammation. To elucidate the underlying molecular targets for the anti-pruritic ability of paeonol, we screened the expression of possible chemokine pathways in the spinal cord. The expression of CXCR3 was significantly alleviated by paeonol, which increased greatly in the spinal neurons of AEW mice. In addition, treatment of paeonol significantly inhibited AEW-induced expression of astrocyte activity-dependent genes including Tlr4, Lcn2 and Hspb1 et al. The inhibitory effects of paeonol on scratching behavior and astrocytic activation in the spinal cord induced by AEW were abolished when CXCR3 was antagonized or genetically ablated. Taken together, our results indicated that paeonol can ameliorate AEW-induced inflammatory response and itching behavior, and reduce the expression of spinal astrocyte activity-dependent genes induced by AEW, which are driven by CXCR3.

2022 ◽  
Vol 14 ◽  
Yue Hu ◽  
Qing-Yue Fu ◽  
Dan-Ni Fu ◽  
Xue-Long Wang ◽  
Zhi-Hong Wang ◽  

Itching is a common symptom of many skin or systemic diseases and has a negative impact on the quality of life. Zinc, one of the most important trace elements in an organism, plays an important role in the regulation of pain. Whether and how zinc regulates itching is largely unclear. Herein, we explored the role of Zn2+ in the regulation of acute and chronic itch in mice. It is found that intradermal injection (i.d.) of Zn2+ dose-dependently induced acute itch and transient receptor potential A1 (TRPA1) participated in Zn2+-induced acute itch in mice. Moreover, the pharmacological analysis showed the involvement of histamine, mast cells, opioid receptors, and capsaicin-sensitive C-fibers in Zn2+-induced acute itch in mice. Systemic administration of Zn2+ chelators, such as N,N,N′,N′-Tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), pyrithione, and clioquinol were able to attenuate both acute itch and dry skin-induced chronic itch in mice. Quantitative polymerase chain reaction (Q-PCR) analysis showed that the messenger RNA (mRNA) expression levels of zinc transporters (ZIPs and ZnTs) significantly changed in the dorsal root ganglia (DRG) under dry skin-induced chronic itch condition in mice. Activation of extracellular signal-regulated kinase (ERK) pathway was induced in the DRG and skin by the administration of zinc or under dry skin condition, which was inhibited by systemic administration of Zn2+ chelators. Finally, we found that the expression of GPR39 (a zinc-sensing GPCR) was significantly upregulated in the dry skin mice model and involved in the pathogenesis of chronic itch. Together, these results indicated that the TRPA1/GPR39/ERK axis mediated the zinc-induced itch and, thus, targeting zinc signaling may be a promising strategy for anti-itch therapy.

2021 ◽  
Vol 22 (22) ◽  
pp. 12365
Sumika Toyama ◽  
Mitsutoshi Tominaga ◽  
Kenji Takamori

Although histamine is a well-known itch mediator, histamine H1-receptor blockers often lack efficacy in chronic itch. Recent molecular and cellular based studies have shown that non-histaminergic mediators, such as proteases, neuropeptides and cytokines, along with their cognate receptors, are involved in evocation and modulation of itch sensation. Many of these molecules are produced and secreted by immune cells, which act on sensory nerve fibers distributed in the skin to cause itching and sensitization. This understanding of the connections between immune cell-derived mediators and sensory nerve fibers has led to the development of new treatments for itch. This review summarizes current knowledge of immune cell-derived itch mediators and neuronal response mechanisms, and discusses therapeutic agents that target these systems.

2021 ◽  
Vol 11 (1) ◽  
Hans Jürgen Solinski ◽  
Roman Rukwied ◽  
Martin Schmelz

AbstractSingle intradermal injections of nerve growth factor (NGF) evoke prolonged but temporally distinct sensitization patterns to somatosensory stimuli. Focal administration of the non-histaminergic pruritogen cowhage but not histamine resulted in elevated itch at day 21 after NGF administration. Here, we injected bovine adrenal medulla peptide 8–22 (BAM8–22), β-alanine (β-ALA) and endothelin-1 (ET-1) into NGF-treated skin of 11 healthy volunteers and investigated the corresponding itch/pain and flare reactions. β-ALA was the weakest pruritogen, while BAM8–22 and ET-1 were equally potent as histamine. NGF did not sensitize itch or flare reactions induced by any compound, but injection and evoked pain were increased at day 21 and 49. The involvement of histamine H1 receptors in itch was explored in eight subjects after oral cetirizine. ET-1-induced itch and flare were significantly reduced. BAM8–22 and β-ALA itch were not affected, but flare responses after BAM8–22 reduced by 50%. The results indicate that a single NGF injection does not sensitize for experimentally induced itch but increases pain upon pruritogen injection. In healthy humans, pruritic and algetic processing appear differentially regulated by NGF. However, in patients suffering chronic itch, prolonged elevation of NGF-levels under inflammatory conditions may contribute to elevated itch.

2021 ◽  
Yan Liu ◽  
Yutong Liu ◽  
Claire Narang ◽  
Nathachit Limjunyawong ◽  
Hanna Jamaldeen ◽  

Abstract Background: Chronic pruritus is a prominent symptom of allergic contact dermatitis (ACD) and represent a huge unmet health problem. However, its underlying cellular and molecular mechanisms remain largely unexplored. TRPC3 is highly expressed in primary sensory neurons and has been implicated in peripheral sensitization induced by proinflammatory mediators. However, the role of TRPC3 in acute and chronic itch is still not well defined. Methods: RNAscope in situ hybridization and immunohistochemical staining were performed on mouse trigeminal ganglion (TG) neurons. Fura-2 calcium imaging was used to characterize the function of TRPC3 in dissociated TG neurons. In native mice, the TRPC3 agonist and pruritogens were subcutaneously injected to the cheek and nape of the neck of mice, respectively. Site directed scratching and/or wiping behaviors were video recorded. Contact hypersensitivity (CHS) model was induced in mouse ears by topical application of SADBE or DNCB. Spontaneous scratching behaviors were recorded by video monitoring. Global and conditional Trpc3 knockout mice were employed to determine the contribution of TRPC3 to acute and chronic itch. The mRNA expression levels of Trpc3 and proinflammatory cytokines were assayed by quantitative real-time PCR. H&E. staining was used for the evaluation of the thickness of mouse ears. Flow cytometry was performed to assess immune cell infiltration in mouse ear tissues. Results: Among mouse TG neurons, RNAscope assay revealed that Trpc3 mRNA was predominantly expressed in nonpeptidergic small diameter neurons. Moreover, Trpc3 mRNA signal was present in the majority of itch sensing neurons. TRPC3 agonism induced TG neuronal activation and acute nonhistaminergic itch- and pain-like behaviors in naïve mice. In addition, genetic deletion of Trpc3 attenuated acute itch evoked by certain common nonhistaminergic pruritogens, including endothelin-1 and SLIGRL-NH2. In a murine model of CHS, Trpc3 mRNA expression level and function were upregulated in the TG following CHS. Pharmacological inhibition and global knockout of Trpc3 significantly alleviated spontaneous scratching behaviors without affecting concurrent cutaneous inflammation in the CHS model. Furthermore, conditional deletion of Trpc3 in primary sensory neurons but not in keratinocytes produced similar antipruritic effects in this model. Conclusions: These findings suggest that TRPC3 expressed in primary sensory neurons may contribute to acute and chronic itch via a histamine independent mechanism and that targeting neuronal TRPC3 might benefit the treatment of chronic itch associated with ACD and other inflammatory skin disorders.

2021 ◽  
Vol 97 (5) ◽  
pp. 274-277
Zsuzsanna Bata-Csörgő ◽  

Prurigo nodularis (PN) is a skin disease that develops on chronically itchy skin. There are various causes behind the chronic itch. Due to intensive research in recent years different mechanisms that can participate in the development of chronic pruritus have been discovered, opening up new therapeutic targets for treatment. Here we review the various mechanisms behind chronic pruritus and discuss the novel therapies for PN.

2021 ◽  
Vol 19 (1) ◽  
Luciano Furlanetti ◽  
Harutomo Hasegawa ◽  
Natasha Hulse ◽  
Rachael Morris-Jones ◽  
Keyoumars Ashkan

Abstract Background Central itch syndrome has been previously described in conditions such as stroke. The neurophysiology of central itch syndrome has been investigated in non-human primates but remains incompletely understood. Methods We report an observational study of a rare case of severe central itch following thalamic deep brain stimulation and postulate the location of the central itch centre in humans. Results The patient was a 47-year-old female, with congenital spinal malformations, multiple previous corrective spinal surgeries and a 30-year history of refractory neuropathic pain in her back and inferior limbs. Following multidisciplinary pain assessment and recommendation, she was referred for spinal cord stimulation, but the procedure failed technically due to scarring related to her multiple previous spinal surgeries. She was therefore referred to our centre and underwent bilateral deep brain stimulation (DBS) of the ventral posterolateral nucleus of the thalamus for management of her chronic pain. Four weeks after switching on the stimulation, the patient reported significant improvement in her pain but developed a full body progressive itch which was then complicated with a rash. Common causes of skin eczema were ruled out by multiple formal dermatological evaluation. A trial of unilateral “off stimulation” was performed showing improvement of the itchy rash. Standard and normalized brain atlases were used to localize the active stimulating contact within the thalamus at a location we postulate as the central itch centre. Conclusions Precise stereotactic imaging points to the lateral portion of the ventral posterolateral and posteroinferior nuclei of the thalamus as critical in the neurophysiology of itch in humans.

2021 ◽  
Vol 2 ◽  
Julien Lambert

Contact dermatitis is a continuous growing environmental and occupational health problem. It results in high costs for health care systems and the economy due to productivity loss. Moreover, it has a huge impact on the quality of life of patients. The immune response to contact allergy is very complex and not totally elucidated. Recently unique pathways preferentially activated by different allergens were identified. As for a lot of chronic itch disorders, antihistamines are ineffective for allergic contact dermatitis, suggesting a non-histaminergic itch. The precise mechanisms that underlie the development of itch in ACD remain poorly defined. This short review addresses the most recent insights in pruritus in ACD, opening perspectives for future therapies.

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5517
Saadet Inan ◽  
Nae Dun ◽  
Alan Cowan

Antipruritic effects of kappa opioid receptor (KOR) agonists have been shown in rodent models of acute and chronic scratching (itchlike behavior). Three KOR agonists, nalfurafine, difelikefalin, and nalbuphine, are in clinical studies for antipruritic effects in chronic itch of systemic and skin diseases. Nalfurafine (in Japan) and difelikefalin (in the USA) were approved to be used in the treatment of chronic itch in hemodialysis patients. The FDA-approved nalbuphine has been used in clinic for over 40 years, and it is the only narcotic agonist that is not scheduled. We aimed to study (a) antiscratch activity of nalbuphine against TAT-HIV-1 protein (controls HIV transcription)-, deoxycholic acid (DCA, bile acid)-, and chloroquine (CQ)-induced scratching in a mouse model of acute itch; and (b) whether the effect of nalbuphine is produced via KORs. First, dose–responses were developed for pruritogens. Mice were pretreated with nalbuphine (0.3–10 mg/kg) and then a submaximal dose of pruritogens were administered and the number of scratching bouts was counted. To study if the antiscratch effect of nalbuphine is produced via KOR, we used KOR knock out mice and pharmacologic inhibition of KORs using nor-binaltorphimine, a KOR antagonist. For this aim, we used CQ as a pruritogen. We found that: (a) TAT-HIV-1 protein elicits scratching in a dose-dependent manner; (b) nalbuphine inhibits scratching induced by TAT-HIV-1, DCA, and CQ dose-dependently; and (c) nalbuphine inhibits scratching induced by CQ through KORs. In conclusion, nalbuphine inhibits scratching elicited by multiple pruritogens.

Sign in / Sign up

Export Citation Format

Share Document