scholarly journals Hemodynamic Responses Link Individual Differences in Informational Masking to the Vicinity of Superior Temporal Gyrus

2021 ◽  
Vol 15 ◽  
Author(s):  
Min Zhang ◽  
Nima Alamatsaz ◽  
Antje Ihlefeld

Suppressing unwanted background sound is crucial for aural communication. A particularly disruptive type of background sound, informational masking (IM), often interferes in social settings. However, IM mechanisms are incompletely understood. At present, IM is identified operationally: when a target should be audible, based on suprathreshold target/masker energy ratios, yet cannot be heard because target-like background sound interferes. We here confirm that speech identification thresholds differ dramatically between low- vs. high-IM background sound. However, speech detection thresholds are comparable across the two conditions. Moreover, functional near infrared spectroscopy recordings show that task-evoked blood oxygenation changes near the superior temporal gyrus (STG) covary with behavioral speech detection performance for high-IM but not low-IM background sound, suggesting that the STG is part of an IM-dependent network. Moreover, listeners who are more vulnerable to IM show increased hemodynamic recruitment near STG, an effect that cannot be explained based on differences in task difficulty across low- vs. high-IM. In contrast, task-evoked responses near another auditory region of cortex, the caudal inferior frontal sulcus (cIFS), do not predict behavioral sensitivity, suggesting that the cIFS belongs to an IM-independent network. Results are consistent with the idea that cortical gating shapes individual vulnerability to IM.

Author(s):  
Min Zhang ◽  
Nima Alamatsaz ◽  
Antje Ihlefeld

AbstractSuppressing unwanted background sound is crucial for aural communication. Public spaces often contain a particularly disruptive background sound, called informational masking (IM). At present, IM is identified operationally: when a target should be audible, based on suprathreshold target/masker energy ratios, yet cannot be heard because perceptually similar background sound interferes. Here, behavioral experiments combined with functional near infrared spectroscopy identify brain regions that predict individual vulnerability to IM. Results show that tasked-evoked blood oxygenation changes near the superior temporal gyrus (STG) and behavioral speech detection performance covary for same-ear IM background sound, suggesting that the STG is part of an IM-dependent network. Moreover, listeners who are more vulnerable to IM show an increased metabolic need for oxygen near STG. In contrast, task-evoked responses in a region of lateral frontal cortex, the caudal inferior frontal sulcus (cIFS), do not predict behavioral sensitivity, suggesting that the cIFS belongs to an IM-independent network.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2362 ◽  
Author(s):  
Alexander E. Hramov ◽  
Vadim Grubov ◽  
Artem Badarin ◽  
Vladimir A. Maksimenko ◽  
Alexander N. Pisarchik

Sensor-level human brain activity is studied during real and imaginary motor execution using functional near-infrared spectroscopy (fNIRS). Blood oxygenation and deoxygenation spatial dynamics exhibit pronounced hemispheric lateralization when performing motor tasks with the left and right hands. This fact allowed us to reveal biomarkers of hemodynamical response of the motor cortex on the motor execution, and use them for designing a sensing method for classification of the type of movement. The recognition accuracy of real movements is close to 100%, while the classification accuracy of imaginary movements is lower but quite high (at the level of 90%). The advantage of the proposed method is its ability to classify real and imaginary movements with sufficiently high efficiency without the need for recalculating parameters. The proposed system can serve as a sensor of motor activity to be used for neurorehabilitation after severe brain injuries, including traumas and strokes.


2020 ◽  
Vol 4 (1) ◽  
pp. 47-52
Author(s):  
Fairuz Mohd Nasir ◽  
Hiroshi Watabe

Functional near-infrared spectroscopy (fNIRS) is an optical imaging tool to study brain activities. Moreover, many researchers combined fNIRS with other modalities to gain a better understanding of the brain. This paper provides an overview of the combination of fNIRS with other imaging modalities in the detection and measurement of the cerebral hemodynamic. Cerebral haemodynamic such as the cerebral blood flow (CBF), cerebral blood volume (CBV) and cerebral blood oxygenation (CBO) are the important parameters in many neuroimaging studies. Cerebral hemodynamic had been studied by various medical imaging modalities.  Initially, Xenon enhanced Computed Tomography (Xenon CT), Computed Tomography (CT) perfusion; Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET) are used to measure the cerebral hemodynamic. Recently, fNIRS is used to optically observe the changes in cerebral haemodynamic during brain activities and the combination of fNIRS with other modalities also become an interest to study the relations within brain activities and the cerebral hemodynamic. Therefore, this paper provides an overview of existing multimodal fNIRS in detection of cerebral haemodynamic changes and provides an important insight on how multimodal fNIRS aid in advancing modern investigations of human brain function.       Keywords: multimodal imaging, fNIRS-fMRI, fNIRS-PET, fNIRS-EEG


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Jiang Zhang ◽  
Xiaohong Lin ◽  
Genyue Fu ◽  
Liyang Sai ◽  
Huafu Chen ◽  
...  

Abstract Deception is not a rare occurrence among human behaviors; however, the present brain mapping techniques are insufficient to reveal the neural mechanism of deception under spontaneous or controlled conditions. Interestingly, functional near-infrared spectroscopy (fNIRS) has emerged as a highly promising neuroimaging technique that enables continuous and noninvasive monitoring of changes in blood oxygenation and blood volume in the human brain. In this study, fNIRS was used in combination with complex network theory to extract the attribute features of the functional brain networks underling deception in subjects exhibiting spontaneous or controlled behaviors. Our findings revealed that the small-world networks of the subjects engaged in spontaneous behaviors exhibited greater clustering coefficients, shorter average path lengths, greater average node degrees, and stronger randomness compared with those of subjects engaged in control behaviors. Consequently, we suggest that small-world network topology is capable of distinguishing well between spontaneous and controlled deceptions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Leonore Blum ◽  
David Rosenbaum ◽  
Benjamin Röben ◽  
Katja Dehnen ◽  
Walter Maetzler ◽  
...  

AbstractIn our aging society, research into neurodegenerative processes is of great interest. Thereby, cortical activation under different neurocognitive conditions is considered to be a promising predictor. Against this background, the executive functions of a total of 250 healthy older adults (53–84 years) have been investigated using the Trail Making Test (TMT) and functional near-infrared spectroscopy in a block design. We investigated effects of age on the performance and cortical blood oxygenation during the TMT. Since it is assumed that older people may compensate for cognitive deficits by slowing their processing speed, we additionally analyzed the cortical blood oxygenation per solved item. Our results showed a significant decrease in processing speed in older participants compared to middle-aged individuals, however, also lower error rates during TMT part A. On a neurophysiological level, we observed increased cortical blood oxygenation in the older participants when completing the TMT. Finally, with respect to the combined measurement (O2Hb/item), no significantly higher hemodynamic cortical response per item was found within the older participants. The results confirm a deterioration of cognitive performance and an increase of cortical activity with increasing age. The findings are discussed in the light of current research.


2021 ◽  
Vol 14 ◽  
Author(s):  
Joy Hirsch ◽  
Mark Tiede ◽  
Xian Zhang ◽  
J. Adam Noah ◽  
Alexandre Salama-Manteau ◽  
...  

Although the neural systems that underlie spoken language are well-known, how they adapt to evolving social cues during natural conversations remains an unanswered question. In this work we investigate the neural correlates of face-to-face conversations between two individuals using functional near infrared spectroscopy (fNIRS) and acoustical analyses of concurrent audio recordings. Nineteen pairs of healthy adults engaged in live discussions on two controversial topics where their opinions were either in agreement or disagreement. Participants were matched according to their a priori opinions on these topics as assessed by questionnaire. Acoustic measures of the recorded speech including the fundamental frequency range, median fundamental frequency, syllable rate, and acoustic energy were elevated during disagreement relative to agreement. Consistent with both the a priori opinion ratings and the acoustic findings, neural activity associated with long-range functional networks, rather than the canonical language areas, was also differentiated by the two conditions. Specifically, the frontoparietal system including bilateral dorsolateral prefrontal cortex, left supramarginal gyrus, angular gyrus, and superior temporal gyrus showed increased activity while talking during disagreement. In contrast, talking during agreement was characterized by increased activity in a social and attention network including right supramarginal gyrus, bilateral frontal eye-fields, and left frontopolar regions. Further, these social and visual attention networks were more synchronous across brains during agreement than disagreement. Rather than localized modulation of the canonical language system, these findings are most consistent with a model of distributed and adaptive language-related processes including cross-brain neural coupling that serves dynamic verbal exchanges.


Author(s):  
Aleksandra Dopierała ◽  
◽  
Anna Przewodzka ◽  
Przemysław Tomalski ◽  
◽  
...  

Abstract: Functional near-infrared spectroscopy (fNIRS) is a non-invasive optical brain monitoring technology for mapping the functioning of the human cortex in response to sensory or motor activation. There is a growing interest in implementing fNIRS to monitor the cognitive performance of military pilots. The method relies on differences in hemoglobin absorption spectra depending on blood oxygenation. However, this method was relatively rarely utilized in aviation and aviation medicine. Therefore, we will provide a broad review of applying this method in various avenues of medicine and cognitive psychology, as well as cover its documented use in aviation and aviation medicine. In this review, we cover the following topics: 1) fNIRS in comparison to most commonly used neuroimaging methods, 2) fNIRS in the evaluation of human performance, 3) fNIRS application in aviation and aviation medicine, and 4) fNIRS-based Brain-Computer-Interface (BCI) to overcome cognitive restrictions and for optimizing pilot training. In conclusion, over the years, fNIRS has become a neuroimaging technique that contributes to making advances toward understanding the functioning of the human brain.


Sign in / Sign up

Export Citation Format

Share Document