scholarly journals Case Report: Reduced CSF Orexin Levels in a Patient With Sepsis

2021 ◽  
Vol 15 ◽  
Author(s):  
Yasuhiro Ogawa ◽  
Seioh Ezaki ◽  
Nobutake Shimojo ◽  
Satoru Kawano

Sepsis is a potentially lethal condition characterized by systemic inflammation and multiple organ failure, and sepsis-associated encephalopathy (SAE) is an independent risk factor for mortality in patients with sepsis. We previously reported that orexin improved survival in an animal model of sepsis by acting in the brain. Peripherally administered orexin entered the brain under the conditions of systemic inflammation because of BBB dysfunction and produced survival-related effects. As a therapeutic concept, we hypothesized that orexin treatment enhances recovery from sepsis by restoring reduced orexin levels in cerebrospinal fluid (CSF). Here, we report that CSF orexin levels were reduced in a 63-year-old woman with sepsis. The patient presented with coma, fever, headache, vomiting, and seizures upon arrival at the emergency room. She had a history of subarachnoid hemorrhage which led to the development of hydrocephalus, and as a consequence, a ventriculoperitoneal shunt (VP shunt) tube had been installed to ameliorate the complication. Physical examinations showed dehydration and abnormality of circulation, arterial blood gas analysis showed insufficient oxygenation, blood tests showed an inflammatory response, liver injury, kidney injury, hyperkalemia, and hyperglycemia, and radio graphical examinations showed mild hydrocephalus and several old microinfarctions. She was diagnosed with sepsis because her Sequential Organ Failure Assessment (SOFA) score was 13 and Enterococcus faecalis was isolated form her blood and CSF. Status epilepticus, hyperglycemia, and sepsis-associated encephalopathy were considered possible causes of coma. Her CSF could be safely sampled because she had a VP shunt, although it is ethically difficult to sample CSF routinely from patients with sepsis. Reduced CSF orexin levels gradually recovered as she recovered from sepsis. Unexpectedly, orexin was detected in the blood, which is unusual in healthy humans. Blood orexin was not detected after recovery from sepsis. This result may imply that orexin leaks into the blood because of BBB dysfunction. To the best of our knowledge, this is the first report investigating orexin levels in the CSF and blood of a patient with sepsis, and the data obtained from this case may provide a new understanding of the pathophysiology of SAE.

1985 ◽  
Vol 32 (2) ◽  
pp. 112-118
Author(s):  
Seong Gyu Hwang ◽  
Su Taik Uh ◽  
Byung Soo Ahn ◽  
Dong Cheul Han ◽  
Choon Sik Park ◽  
...  

2017 ◽  
Vol 32 (2) ◽  
pp. 148-153
Author(s):  
Asifa Karamat ◽  
Shazia Awan ◽  
Muhammad Ghazanfar Hussain ◽  
Fahad Al Hameed ◽  
Faheem Butt ◽  
...  

2020 ◽  
Author(s):  
V. Collot ◽  
S. Malinverni ◽  
E. Schweitzer ◽  
J. Haltout ◽  
P. Mols ◽  
...  

AbstractStudy objectiveThe primary objective of the study was a quantitative analysis to assess the mean difference and 95% confidence interval of the difference between capillary and arterial blood gas analyses for pH, pCO2 and lactate. Secondary objective was to measure the sensitivity and specificity of capillary samples to detect altered pH, hypercarbia and lactic acidosis.MethodsAdults admitted to the ED for whom the treating physician deemed necessary an arterial blood gas analysis (BGA) were screened for inclusion. Simultaneous arterial and capillary samples were drawn for BGA. Agreement between the two methods for pH, pCO2 and lactate were studied with Bland-Altman bias plot analysis. Sensitivity, specificity, positive and negative predictive value as well as AUC were calculated for the ability of capillary samples to detect pH values outside normal ranges, hypercarbia and hyperlactatemia.Results197 paired analyses were included in the study. Mean difference for pH, between arterial and capillary BGA was 0.0095, 95% limits of agreement were -0.048 to 0.067. For pCO2, mean difference was -0.3 mmHg, 95% limits of agreement were -8.5 to 7.9 mmHg. Lactate mean difference was -0.93 mmol/L, 95% limits of agreement were -2.7 to 0.8 mmol/L. At a threshold of 7.34 for capillary pH had 98% sensitivity and 97% specificity to detect acidemia; at 45.9 mmHg capillary pCO2 had 89% sensitivity and 96% specificity to detect hypercarbia. Finally at a threshold of 3.5 mmol/L capillary lactate had 66% sensitivity to detect lactic acidosis.ConclusionCapillary measures of pH, pCO2 and lactate can’t replace arterial measurements although there is high concordance between the two methods for pH and pCO2 and moderate concordance for lactate. Capillary blood gas analysis had good accuracy when used as a screening tool to detect altered pH and hypercarbia but insufficient sensitivity and specificity when screening for lactic acidosis.


Sign in / Sign up

Export Citation Format

Share Document