scholarly journals Proteomic Analysis Reveals Sex-Specific Protein Degradation Targets in the Amygdala During Fear Memory Formation

2021 ◽  
Vol 14 ◽  
Author(s):  
Kayla Farrell ◽  
Madeline Musaus ◽  
Shaghayegh Navabpour ◽  
Kiley Martin ◽  
W. Keith Ray ◽  
...  

Ubiquitin-proteasome mediated protein degradation has been widely implicated in fear memory formation in the amygdala. However, to date, the protein targets of the proteasome remain largely unknown, limiting our understanding of the functional significance for protein degradation in fear memory formation. Additionally, whether similar proteins are targeted by the proteasome between sexes has yet to be explored. Here, we combined a degradation-specific K48 Tandem Ubiquitin Binding Entity (TUBE) with liquid chromatography mass spectrometry (LC/MS) to identify the target substrates of the protein degradation process in the amygdala of male and female rats following contextual fear conditioning. We found that males (43) and females (77) differed in the total number of proteins that had significant changes in K48 polyubiquitin targeting in the amygdala following fear conditioning. Many of the identified proteins (106) had significantly reduced levels in the K48-purified samples 1 h after fear conditioning, suggesting active degradation of the substrate due to learning. Interestingly, only 3 proteins overlapped between sexes, suggesting that targets of the protein degradation process may be sex-specific. In females, many proteins with altered abundance in the K48-purified samples were involved in vesicle transport or are associated with microtubules. Conversely, in males, proteins involved in the cytoskeleton, ATP synthesis and cell signaling were found to have significantly altered abundance. Only 1 protein had an opposite directional change in abundance between sexes, LENG1, which was significantly enhanced in males while lower in females. This suggests a more rapid degradation of this protein in females during fear memory formation. Interestingly, GFAP, a critical component of astrocyte structure, was a target of K48 polyubiquitination in both males and females, indicating that protein degradation is likely occurring in astrocytes following fear conditioning. Western blot assays revealed reduced levels of these target substrates following fear conditioning in both sexes, confirming that the K48 polyubiquitin was targeting these proteins for degradation. Collectively, this study provides strong evidence that sex differences exist in the protein targets of the degradation process in the amygdala following fear conditioning and critical information regarding how ubiquitin-proteasome mediated protein degradation may contribute to fear memory formation in the brain.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Katy L. H. Marshall-Phelps ◽  
Gernot Riedel ◽  
Peer Wulff ◽  
Marta Woloszynowska-Fraser

AbstractPurkinje cells are the only output cell of the cerebellar cortex. Their spatiotemporal activity is controlled by molecular layer interneurons (MLIs) through GABAA receptor-mediated inhibition. Recently, it has been reported that the cerebellar cortex is required for consolidation of conditioned fear responses during fear memory formation. Although the relevance of MLIs during fear memory formation is currently not known, it has been shown that synapses made between MLIs and Purkinje cells exhibit long term plasticity following fear conditioning. The present study examined the role of cerebellar MLIs in the formation of fear memory using a genetically-altered mouse line (PC-∆γ2) in which GABAA receptor-mediated signaling at MLI to Purkinje cell synapses was functionally removed. We found that neither acquisition nor recall of fear memories to tone and context were altered after removal of MLI-mediated inhibition.


2006 ◽  
Vol 26 (23) ◽  
pp. 9094-9104 ◽  
Author(s):  
Keiko Mizuno ◽  
Laurence Ris ◽  
Amelia Sánchez-Capelo ◽  
Emile Godaux ◽  
K. Peter Giese

ABSTRACT In neurons, the Ca2+/calmodulin (CaM) kinase cascade transduces Ca2+ signaling into gene transcription. The CaM kinase cascade is known to be important for brain development as well as memory formation in adult brain, although the functions of some cascade members remain unknown. Here we have generated null and hypomorphic mutants to study the physiological role of CaM kinase kinase α (CaMKKα), which phosphorylates and activates both CaM kinase I (CaMKI) and CaMKIV, the output kinases of the cascade. We show that CaMKKα is dispensable for brain development and long-term potentiation in adult hippocampal CA1 synapses. We find that CaMKKα is required for hippocampus-dependent contextual fear memory, but not spatial memory, formation. Surprisingly, CaMKKα is important for contextual fear memory formation in males but not in females. We show that in male mice, contextual fear conditioning induces up-regulation of hippocampal mRNA expression of brain-derived neurotrophic factor (BDNF) in a way that requires CaMKKα, while in female mice, contextual fear conditioning induces down-regulation of hippocampal BDNF mRNA expression that does not require CaMKKα. Additionally, we demonstrate sex-independent up-regulation in hippocampal nerve growth factor-inducible gene B mRNA expression that does not require CaMKKα. Thus, we show that CaMKKα has a specific complex role in memory formation in males.


2021 ◽  
Vol 15 ◽  
Author(s):  
Amanda S. Russo ◽  
Ryan G. Parsons

The study of fear conditioning has led to a better understanding of fear and anxiety-based disorders such as post-traumatic stress disorder (PTSD). Despite the fact many of these disorders are more common in women than in men, the vast majority of work investigating fear conditioning in rodents has been conducted in males. The goal of the work presented here was to better understand how biological sex affects contextual fear conditioning and expression. To this end, rats of both sexes were trained to fear a specific context and fear responses were measured upon re-exposure to the conditioning context. In the first experiment, male and female rats were given context fear conditioning and tested the next day during which freezing behavior was measured. In the second experiment, rats were trained and tested in a similar fashion while fear-potentiated startle and defecation were measured. We found that males showed more freezing behavior than females during a fear expression test. The expression of fear-potentiated startle did not differ between sexes, while males exhibited more defecation during a test in a novel context. These data suggest that the expression of defensive behavior differs between sexes and highlight the importance of using multiple measures of fear when comparing between sexes.


2007 ◽  
Vol 2007 ◽  
pp. 1-12 ◽  
Author(s):  
Maria Toledo-Rodriguez ◽  
Carmen Sandi

Adolescence is a period of major physical, hormonal, and psychological changes. It is also characterized by a significant increase in the incidence of psychopathologies and this increase is gender-specific. Stress during adolescence is associated with the development of psychiatric disorders later in life. In this study, we evaluated the impact of psychogenic stress (exposure to predator odor followed by placement on an elevated platform) experienced before puberty (days 28–30) on fear memories and hormonal response of male and female rats during adolescence and early adulthood. Stress before puberty impacted in a sex- and age-specific way on the responses to auditory and contextual fear conditioning in adolescence and adulthood: (a) increased conditioned fear to the tone in males during adolescence but not during adulthood; (b) impaired extinction to the tone in adult males; and (c) reduced freezing responses to the context in adolescent females. Stress before puberty did not influence the corticosterone levels 30 minutes after an additional stressor given in adulthood. These results indicate that stress experienced prior to puberty can exert a sex-related differential impact on fear-related behaviors displayed by individuals during late adolescence and early adulthood.


2021 ◽  
Vol 13 ◽  
Author(s):  
Yesenia Castillo-Ocampo ◽  
María Colón ◽  
Anixa Hernández ◽  
Pablo Lopez ◽  
Yamil Gerena ◽  
...  

Although the infralimbic cortex (IL) is not thought to play a role in fear acquisition, recent experiments found evidence that synaptic plasticity is occurring at ventral hippocampal (vHPC) synapses in IL during auditory fear acquisition as measured by changes in the N-methyl-D-aspartate (NMDA) receptor-mediated currents in male rats. These electrophysiological data suggest that fear conditioning changes the expression of NMDA receptors on vHPC-to-IL synapses. To further evaluate the plasticity of NMDA receptors at this specific synapse, we injected AAV particles expressing channelrhodopsin-EYFP into the vHPC of male and female rats to label vHPC projections with EYFP. To test for NMDA receptor changes in vHPC-to-IL synapses after fear learning, we used fluorescence-activated cell sorting (FACS) to quantify synaptosomes isolated from IL tissue punches that were positive for EYFP and the obligatory GluN1 subunit. More EYFP+/GluN1+ synaptosomes with greater average expression of GluN1 were isolated from male rats exposed to auditory fear conditioning (AFC) than those exposed to context and tones only or to contextual fear conditioning (CFC), suggesting that AFC increased NMDA receptor expression in males. In a second experiment, we found that pairing the tones and shocks was required to induce the molecular changes and that fear extinction did not reverse the changes. In contrast, females showed similar levels of EYFP+/GluN1+ synaptosomes in all behavioral groups. These findings suggest that AFC induces synaptic plasticity of NMDA receptors in the vHPC-to-IL projection in males, while female rats rely on different synaptic mechanisms.


2016 ◽  
Vol 96 (2) ◽  
pp. 695-750 ◽  
Author(s):  
Ivan Izquierdo ◽  
Cristiane R. G. Furini ◽  
Jociane C. Myskiw

Fear memory is the best-studied form of memory. It was thoroughly investigated in the past 60 years mostly using two classical conditioning procedures (contextual fear conditioning and fear conditioning to a tone) and one instrumental procedure (one-trial inhibitory avoidance). Fear memory is formed in the hippocampus (contextual conditioning and inhibitory avoidance), in the basolateral amygdala (inhibitory avoidance), and in the lateral amygdala (conditioning to a tone). The circuitry involves, in addition, the pre- and infralimbic ventromedial prefrontal cortex, the central amygdala subnuclei, and the dentate gyrus. Fear learning models, notably inhibitory avoidance, have also been very useful for the analysis of the biochemical mechanisms of memory consolidation as a whole. These studies have capitalized on in vitro observations on long-term potentiation and other kinds of plasticity. The effect of a very large number of drugs on fear learning has been intensively studied, often as a prelude to the investigation of effects on anxiety. The extinction of fear learning involves to an extent a reversal of the flow of information in the mentioned structures and is used in the therapy of posttraumatic stress disorder and fear memories in general.


Sign in / Sign up

Export Citation Format

Share Document