scholarly journals Cerebellar molecular layer interneurons are dispensable for cued and contextual fear conditioning

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Katy L. H. Marshall-Phelps ◽  
Gernot Riedel ◽  
Peer Wulff ◽  
Marta Woloszynowska-Fraser

AbstractPurkinje cells are the only output cell of the cerebellar cortex. Their spatiotemporal activity is controlled by molecular layer interneurons (MLIs) through GABAA receptor-mediated inhibition. Recently, it has been reported that the cerebellar cortex is required for consolidation of conditioned fear responses during fear memory formation. Although the relevance of MLIs during fear memory formation is currently not known, it has been shown that synapses made between MLIs and Purkinje cells exhibit long term plasticity following fear conditioning. The present study examined the role of cerebellar MLIs in the formation of fear memory using a genetically-altered mouse line (PC-∆γ2) in which GABAA receptor-mediated signaling at MLI to Purkinje cell synapses was functionally removed. We found that neither acquisition nor recall of fear memories to tone and context were altered after removal of MLI-mediated inhibition.

2006 ◽  
Vol 26 (23) ◽  
pp. 9094-9104 ◽  
Author(s):  
Keiko Mizuno ◽  
Laurence Ris ◽  
Amelia Sánchez-Capelo ◽  
Emile Godaux ◽  
K. Peter Giese

ABSTRACT In neurons, the Ca2+/calmodulin (CaM) kinase cascade transduces Ca2+ signaling into gene transcription. The CaM kinase cascade is known to be important for brain development as well as memory formation in adult brain, although the functions of some cascade members remain unknown. Here we have generated null and hypomorphic mutants to study the physiological role of CaM kinase kinase α (CaMKKα), which phosphorylates and activates both CaM kinase I (CaMKI) and CaMKIV, the output kinases of the cascade. We show that CaMKKα is dispensable for brain development and long-term potentiation in adult hippocampal CA1 synapses. We find that CaMKKα is required for hippocampus-dependent contextual fear memory, but not spatial memory, formation. Surprisingly, CaMKKα is important for contextual fear memory formation in males but not in females. We show that in male mice, contextual fear conditioning induces up-regulation of hippocampal mRNA expression of brain-derived neurotrophic factor (BDNF) in a way that requires CaMKKα, while in female mice, contextual fear conditioning induces down-regulation of hippocampal BDNF mRNA expression that does not require CaMKKα. Additionally, we demonstrate sex-independent up-regulation in hippocampal nerve growth factor-inducible gene B mRNA expression that does not require CaMKKα. Thus, we show that CaMKKα has a specific complex role in memory formation in males.


2021 ◽  
Vol 14 ◽  
Author(s):  
Kayla Farrell ◽  
Madeline Musaus ◽  
Shaghayegh Navabpour ◽  
Kiley Martin ◽  
W. Keith Ray ◽  
...  

Ubiquitin-proteasome mediated protein degradation has been widely implicated in fear memory formation in the amygdala. However, to date, the protein targets of the proteasome remain largely unknown, limiting our understanding of the functional significance for protein degradation in fear memory formation. Additionally, whether similar proteins are targeted by the proteasome between sexes has yet to be explored. Here, we combined a degradation-specific K48 Tandem Ubiquitin Binding Entity (TUBE) with liquid chromatography mass spectrometry (LC/MS) to identify the target substrates of the protein degradation process in the amygdala of male and female rats following contextual fear conditioning. We found that males (43) and females (77) differed in the total number of proteins that had significant changes in K48 polyubiquitin targeting in the amygdala following fear conditioning. Many of the identified proteins (106) had significantly reduced levels in the K48-purified samples 1 h after fear conditioning, suggesting active degradation of the substrate due to learning. Interestingly, only 3 proteins overlapped between sexes, suggesting that targets of the protein degradation process may be sex-specific. In females, many proteins with altered abundance in the K48-purified samples were involved in vesicle transport or are associated with microtubules. Conversely, in males, proteins involved in the cytoskeleton, ATP synthesis and cell signaling were found to have significantly altered abundance. Only 1 protein had an opposite directional change in abundance between sexes, LENG1, which was significantly enhanced in males while lower in females. This suggests a more rapid degradation of this protein in females during fear memory formation. Interestingly, GFAP, a critical component of astrocyte structure, was a target of K48 polyubiquitination in both males and females, indicating that protein degradation is likely occurring in astrocytes following fear conditioning. Western blot assays revealed reduced levels of these target substrates following fear conditioning in both sexes, confirming that the K48 polyubiquitin was targeting these proteins for degradation. Collectively, this study provides strong evidence that sex differences exist in the protein targets of the degradation process in the amygdala following fear conditioning and critical information regarding how ubiquitin-proteasome mediated protein degradation may contribute to fear memory formation in the brain.


Author(s):  
Andreas Frick ◽  
Johannes Björkstrand ◽  
Mark Lubberink ◽  
Allison Eriksson ◽  
Mats Fredrikson ◽  
...  

AbstractLearning which environmental cues that predict danger is crucial for survival and accomplished through Pavlovian fear conditioning. In humans and rodents alike, fear conditioning is amygdala-dependent and rests on similar neurocircuitry. Rodent studies have implicated a causative role for dopamine in the amygdala during fear memory formation, but the role of dopamine in aversive learning in humans is unclear. Here, we show dopamine release in the amygdala and striatum during fear learning in humans. Using simultaneous positron emission tomography and functional magnetic resonance imaging, we demonstrate that the amount of dopamine release is linked to strength of conditioned fear responses and linearly coupled to learning-induced activity in the amygdala. Thus, like in rodents, formation of amygdala-dependent fear memories in humans seems to be facilitated by endogenous dopamine release, supporting an evolutionary conserved neurochemical mechanism for aversive memory formation.


2013 ◽  
Vol 6 (273) ◽  
pp. ec94-ec94 ◽  
Author(s):  
Nancy R. Gough

The cellular model of memory is a synaptic plasticity event called long-term potentiation (LTP). LTP can be divided into two phases: The early phase (E-LTP) lasts less than 2 hours and does not require new protein synthesis, and the late phase (L-LTP) can last many hours and requires new protein synthesis. Translation of mRNAs is regulated through various mechanisms, one of which is the binding of poly(A)-binding protein (PABP) to the poly(A) tail of the target mRNA. PAIP2A and PAIP2B (PAIP-interacting protein 2A and 2B) inhibit translation by interfering with PABP function. Khoutorsky et al. found that degradation of PAIP2A, which is the form that is abundant in the brain, linked synaptic activity to enhanced translation and contributed to learning and memory in mice. Hippocampal slices from Paip2a–/– mice showed L-LTP in response to a stimulus that only triggered E-LTP in slices from wild-type mice and showed impaired L-LTP in response to a stimulus that triggered L-LTP in slices from wild-type mice. Consistent with these electrophysiological studies, behavorial memory tests indicated that Paip2a–/– mice showed faster learning in spatial long-term memory tests in response to weak training but showed impaired learning in response to a long-term contextual fear conditioning test that used a strong training paradigm. Experiments with cultured neurons and hippocampal slices showed an activity-dependent decrease in the abundance of PAIP2A that could be prevented by pharmacological inhibition of the calcium-dependent proteases calpains. The calpain-dependent reduction in PAIP2A was also detected in mice subjected to the contextual fear conditioning paradigm, and infusion of calpain inhibitors impaired long-term contextual fear memory. Increased production of calcium-calmodulin kinase IIα (CaMKIIα) occurs in response to synaptic activity and is necessary for learning. The abundance of CaMKIIα in the hippocampus was increased in Paip2a–/– mice trained in a contextual fear conditioning paradigm compared with untrained mice or wild-type trained mice. This increase in CaMKIIα resulted from increased translation because CaMKIIα mRNA was shifted to heavy polysome fractions in the brains of Paip2a–/– trained mice and the association of PABP with this mRNA was greatest in the Paip2a–/– trained mice. Thus, activity-dependent degradation of a translation inhibitor contributes to the enhanced translation needed for learning and memory.A. Khoutorsky, A, Yanagiya, C. G. Gkogkas, M. R. Fabian, M. Prager-Khoutorsky, R. Cao, K. Gamache, F. Bouthiette, A. Parsyan, R. E. Sorge, J. S. Mogil, K. Nader, J.-C. Lacaille, N. Sonenberg, Control of synaptic plasticity and memory via suppression of poly(A)-binding protein. Neuron78, 298–311 (2013). [Online Journal]


Sign in / Sign up

Export Citation Format

Share Document