scholarly journals Grain-Based Dietary Background Impairs Restoration of Blood Flow and Skeletal Muscle During Hindlimb Ischemia in Comparison With Low-Fat and High-Fat Diets

2022 ◽  
Vol 8 ◽  
Author(s):  
Iurii Stafeev ◽  
Maria Boldyreva ◽  
Svetlana Michurina ◽  
Elizaveta Mamontova ◽  
Elizaveta Ratner ◽  
...  

Background: Among vascular pathologies associated with obesity, peripheral artery disease (PAD) occupies the important position. In clinical practice, nutritional interventions are recommended for patients with PAD. In this work, we investigated how the different dietary backgrounds affect the regeneration rate of ischemic hindlimb in mice.Methods: Male C57BL/6J mice were housed on three types of diet: low-fat (LFD), high-fat (HFD), and grain-based diet (GBD) for 13 weeks. Metabolic parameters including FBG level, ITT, and GTT were evaluated. The blood flow was assessed by laser Doppler scanning on 7, 14, and 21 days after hindlimb ischemia. Necrotic area of m.tibialis, macrophage infiltration, and angiogenesis/arteriogenesis were evaluated by histology. Glucose uptake in recovered skeletal muscle was analyzed using [3H]-2-deoxyglucose, and GLUT1 and GLUT4 expression were assessed by Western blotting.Results: In our work, we developed three experimental groups with different metabolic parameters: LFD with normal glucose metabolism, GBD with mild hyperglycemia, and HFD with impaired glucose tolerance. GBD-fed mice had a tendency to increase necrosis of m. tibialis and significantly higher macrophage infiltration than LFD and HFD groups. Moreover, GBD-fed mice had a trend to decreased blood flow recovery and significantly impaired arteriogenesis. Recovered skeletal muscle of GBD-fed mice had lower glucose uptake and decreased level of GLUT4 expression.Conclusion: Thus, we conclude that dietary background and metabolic status determine the rate of post-ischemic regeneration including angiogenesis, skeletal muscle recovery and metabolic activity. The most effective regeneration is supported by LFD, while the lowest rate of regeneration occurs on GBD.

2009 ◽  
Vol 297 (2) ◽  
pp. E402-E409 ◽  
Author(s):  
Hoon Ki Sung ◽  
Yong-Woon Kim ◽  
Soo Jeong Choi ◽  
Jong-Yeon Kim ◽  
Kyung Hee Jeune ◽  
...  

To test whether chronic enhanced blood flow alters insulin-stimulated glucose uptake, we measured skeletal muscle glucose uptake in chow-fed and high-fat-fed mice injected with adenovirus containing modified angiopoietin-1, COMP-Ang1, via euglycemic-hyperinsulinemic clamp. Blood flow rates and platelet endothelial cell adhesion molecule-1 positive endothelial cells in the hindlimb skeletal muscle were elevated in COMP-Ang1 compared with control LacZ. Whole body glucose uptake and whole body glycogen/lipid synthesis were elevated in COMP-Ang1 compared with LacZ in chow diet. High-fat diet significantly reduced whole body glucose uptake and whole body glycolysis in LacZ mice, whereas high-fat-fed COMP-Ang1 showed a level of whole body glucose uptake that was comparable with chow-fed LacZ and showed increased glucose uptake compared with high-fat-fed LacZ. Glucose uptake and glycolysis in gastrocnemius muscle of chow-fed COMP-Ang1 were increased compared with chow-fed LacZ. High-fat diet-induced whole body insulin resistance in the LacZ was mostly due to ∼40% decrease in insulin-stimulated glucose uptake in skeletal muscle. In contrast, COMP-Ang1 prevented diet-induced skeletal muscle insulin resistance compared with high-fat-fed LacZ. Akt phosphorylation in skeletal muscle was increased in COMP-Ang1 compared with LacZ in both chow-fed and high-fat-fed groups. These results suggest that increased blood flow by COMP-Ang1 increases insulin-stimulated glucose uptake and prevents high-fat diet-induced insulin resistance in skeletal muscle.


1995 ◽  
Vol 268 (2) ◽  
pp. R492-R497 ◽  
Author(s):  
C. H. Lang ◽  
M. Ajmal ◽  
A. G. Baillie

Intracerebroventricular injection of N-methyl-D-aspartate (NMDA) produces hyperglycemia and increases whole body glucose uptake. The purpose of the present study was to determine in rats which tissues are responsible for the elevated rate of glucose disposal. NMDA was injected intracerebroventricularly, and the glucose metabolic rate (Rg) was determined for individual tissues 20-60 min later using 2-deoxy-D-[U-14C]glucose. NMDA decreased Rg in skin, ileum, lung, and liver (30-35%) compared with time-matched control animals. In contrast, Rg in skeletal muscle and heart was increased 150-160%. This increased Rg was not due to an elevation in plasma insulin concentrations. In subsequent studies, the sciatic nerve in one leg was cut 4 h before injection of NMDA. NMDA increased Rg in the gastrocnemius (149%) and soleus (220%) in the innervated leg. However, Rg was not increased after NMDA in contralateral muscles from the denervated limb. Data from a third series of experiments indicated that the NMDA-induced increase in Rg by innervated muscle and its abolition in the denervated muscle were not due to changes in muscle blood flow. The results of the present study indicate that 1) central administration of NMDA increases whole body glucose uptake by preferentially stimulating glucose uptake by skeletal muscle, and 2) the enhanced glucose uptake by muscle is neurally mediated and independent of changes in either the plasma insulin concentration or regional blood flow.


2011 ◽  
Vol 301 (2) ◽  
pp. E342-E350 ◽  
Author(s):  
A. J. Genders ◽  
E. A. Bradley ◽  
S. Rattigan ◽  
S. M. Richards

There is considerable support for the concept that insulin-mediated increases in microvascular blood flow to muscle impact significantly on muscle glucose uptake. Since the microvascular blood flow increases with insulin have been shown to be nitric oxide-dependent inhibition of cGMP-degrading phosphodiesterases (cGMP PDEs) is predicted to enhance insulin-mediated increases in microvascular perfusion and muscle glucose uptake. Therefore, we studied the effects of the pan-cGMP PDE inhibitor zaprinast on the metabolic and vascular actions of insulin in muscle. Hyperinsulinemic euglycemic clamps (3 mU·min−1·kg−1) were performed in anesthetized rats and changes in microvascular blood flow assessed from rates of 1-methylxanthine metabolism across the muscle bed by capillary xanthine oxidase in response to insulin and zaprinast. We also characterized cGMP PDE isoform expression in muscle by real-time PCR and immunostaining of frozen muscle sections. Zaprinast enhanced insulin-mediated microvascular perfusion by 29% and muscle glucose uptake by 89%, while whole body glucose infusion rate during insulin infusion was increased by 33% at 2 h. PDE2, -9, and -10 were the major isoforms expressed at the mRNA level in muscle, while PDE1B, -9A, -10A, and -11A proteins were expressed in blood vessels. Acute administration of the cGMP PDE inhibitor zaprinast enhances muscle microvascular blood flow and glucose uptake response to insulin. The expression of a number of cGMP PDE isoforms in skeletal muscle suggests that targeting specific cGMP PDE isoforms may provide a promising avenue for development of a novel class of therapeutics for enhancing muscle insulin sensitivity.


2018 ◽  
Vol 115 (3) ◽  
pp. 590-601 ◽  
Author(s):  
Dino Premilovac ◽  
Emily Attrill ◽  
Stephen Rattigan ◽  
Stephen M Richards ◽  
Jeonga Kim ◽  
...  

Abstract Aims Angiotensin II (AngII) is a potent vasoconstrictor implicated in both hypertension and insulin resistance. Insulin dilates the vasculature in skeletal muscle to increase microvascular blood flow and enhance glucose disposal. In the present study, we investigated whether acute AngII infusion interferes with insulin’s microvascular and metabolic actions in skeletal muscle. Methods and results Adult, male Sprague-Dawley rats received a systemic infusion of either saline, AngII, insulin (hyperinsulinaemic euglycaemic clamp), or insulin (hyperinsulinaemic euglycaemic clamp) plus AngII. A final, separate group of rats received an acute local infusion of AngII into a single hindleg during systemic insulin (hyperinsulinaemic euglycaemic clamp) infusion. In all animals’ systemic metabolic effects, central haemodynamics, femoral artery blood flow, microvascular blood flow, and skeletal muscle glucose uptake (isotopic glucose) were monitored. Systemic AngII infusion increased blood pressure, decreased heart rate, and markedly increased circulating glucose and insulin concentrations. Systemic infusion of AngII during hyperinsulinaemic euglycaemic clamp inhibited insulin-mediated suppression of hepatic glucose output and insulin-stimulated microvascular blood flow in skeletal muscle but did not alter insulin’s effects on the femoral artery or muscle glucose uptake. Local AngII infusion did not alter blood pressure, heart rate, or circulating glucose and insulin. However, local AngII inhibited insulin-stimulated microvascular blood flow, and this was accompanied by reduced skeletal muscle glucose uptake. Conclusions Acute infusion of AngII significantly alters basal haemodynamic and metabolic homeostasis in rats. Both local and systemic AngII infusion attenuated insulin’s microvascular actions in skeletal muscle, but only local AngII infusion led to reduced insulin-stimulated muscle glucose uptake. While increased local, tissue production of AngII may be a factor that couples microvascular insulin resistance and hypertension, additional studies are needed to determine the molecular mechanisms responsible for these vascular defects.


2020 ◽  
Author(s):  
Ada Admin ◽  
Solvejg L. Hansen ◽  
Kirstine N. Bojsen-Møller ◽  
Anne-Marie Lundsgaard ◽  
Frederikke L. Hendrich ◽  
...  

Women with polycystic ovary syndrome (PCOS) have been shown to be less insulin sensitive compared with control women, independent of BMI. Training is associated with molecular adaptations in skeletal muscle improving glucose uptake and metabolism in both healthy and type 2 diabetic individuals. In the present study, lean, hyperandrogenic women with PCOS (n=9) and healthy controls (CON, n=9) completed 14 weeks of controlled and supervised exercise training. In CON, the training intervention increased whole body insulin action by 26% and insulin-stimulated leg glucose uptake by 53%, together with increased insulin-stimulated leg blood flow and a more oxidative muscle fiber type distribution. In PCOS, no such changes were found, despite similar training intensity and improvements in maximal oxygen uptake. In skeletal muscle of CON, but not PCOS, training increased GLUT4 and HKII mRNA and protein expressions. These data suggest that the impaired increase in whole body insulin action in women with PCOS with training is caused by an impaired ability to upregulate key glucose handling proteins for insulin-stimulated glucose uptake in skeletal muscle, and insulin-stimulated leg blood flow. Still, other important benefits of exercise training appeared in women with PCOS, including an improvement of the hyperandrogenic state.


2001 ◽  
Vol 281 (1) ◽  
pp. E62-E71 ◽  
Author(s):  
Charles Lavigne ◽  
Frédéric Tremblay ◽  
Geneviève Asselin ◽  
Hélène Jacques ◽  
André Marette

In the present study, we tested the hypothesis that fish protein may represent a key constituent of fish with glucoregulatory activity. Three groups of rats were fed a high-fat diet in which the protein source was casein, fish (cod) protein, or soy protein; these groups were compared with a group of chow-fed controls. High-fat feeding led to severe whole body and skeletal muscle insulin resistance in casein- or soy protein-fed rats, as assessed by the euglycemic clamp technique coupled with measurements of 2-deoxy-d-[3H]glucose uptake rates by individual tissues. However, feeding cod protein fully prevented the development of insulin resistance in high fat-fed rats. These animals exhibited higher rates of insulin-mediated muscle glucose disposal that were comparable to those of chow-fed rats. The beneficial effects of cod protein occurred without any reductions in body weight gain, adipose tissue accretion, or expression of tumor necrosis factor-α in fat and muscle. Moreover, L6 myocytes exposed to cod protein-derived amino acids showed greater rates of insulin-stimulated glucose uptake compared with cells incubated with casein- or soy protein-derived amino acids. These data demonstrate that feeding cod protein prevents obesity-induced muscle insulin resistance in high fat-fed obese rats at least in part through a direct action of amino acids on insulin-stimulated glucose uptake in skeletal muscle cells.


2001 ◽  
Vol 280 (1) ◽  
pp. E130-E142 ◽  
Author(s):  
Ben B. Yaspelkis ◽  
James R. Davis ◽  
Maziyar Saberi ◽  
Toby L. Smith ◽  
Reza Jazayeri ◽  
...  

In addition to suppressing appetite, leptin may also modulate insulin secretion and action. Leptin was administered here to insulin-resistant rats to determine its effects on secretagogue-stimulated insulin release, whole body glucose disposal, and insulin-stimulated skeletal muscle glucose uptake and transport. Male Wistar rats were fed either a normal (Con) or a high-fat (HF) diet for 3 or 6 mo. HF rats were then treated with either vehicle (HF), leptin (HF-Lep, 10 mg · kg−1 · day−1 sc), or food restriction (HF-FR) for 12–15 days. Glucose tolerance and skeletal muscle glucose uptake and transport were significantly impaired in HF compared with Con. Whole body glucose tolerance and rates of insulin-stimulated skeletal muscle glucose uptake and transport in HF-Lep were similar to those of Con and greater than those of HF and HF-FR. The insulin secretory response to either glucose or tolbutamide (a pancreatic β-cell secretagogue) was not significantly diminished in HF-Lep. Total and plasma membrane skeletal muscle GLUT-4 protein concentrations were similar in Con and HF-Lep and greater than those in HF and HF-FR. The findings suggest that chronic leptin administration reversed a high-fat diet-induced insulin-resistant state, without compromising insulin secretion.


Endocrinology ◽  
2011 ◽  
Vol 152 (12) ◽  
pp. 4581-4588 ◽  
Author(s):  
Sébastien Bergeron ◽  
Marie-Julie Dubois ◽  
Kerstin Bellmann ◽  
Michael Schwab ◽  
Nancy Larochelle ◽  
...  

The protein tyrosine phosphatase (PTPase) Src-homology 2-domain-containing phosphatase (SHP)-1 was recently reported to be a novel regulator of insulin's metabolic action. In order to examine the role of this PTPase in skeletal muscle, we used adenovirus (AdV)-mediated gene transfer to express an interfering mutant of SHP-1 [dominant negative (DN)SHP-1; mutation C453S] in L6 myocytes. Expression of DNSHP-1 increased insulin-induced Akt serine-threonine kinase phosphorylation and augmented glucose uptake and glycogen synthesis. Pharmacological inhibition of glucose transporter type 4 (GLUT4) activity using indinavir and GLUT4 translocation assays revealed an important role for this transporter in the increased insulin-induced glucose uptake in DNSHP-1-expressing myocytes. Both GLUT4 mRNA and protein expression were also found to be increased by DNSHP-1 expression. Furthermore, AdV-mediated delivery of DNSHP-1 in skeletal muscle of transgenic mice overexpressing Coxsackie and AdV receptor also enhanced GLUT4 protein expression. Together, these findings confirm that SHP-1 regulates muscle insulin action in a cell-autonomous manner and further suggest that the PTPase negatively modulates insulin action through down-regulation of both insulin signaling to Akt and GLUT4 translocation, as well as GLUT4 expression.


Sign in / Sign up

Export Citation Format

Share Document