scholarly journals Gut Microbiota Dysbiosis Accelerates Prostate Cancer Progression Through Increased LPCAT1 Expression and Enhanced DNA Repair Pathways

2021 ◽  
Vol 11 ◽  
Author(s):  
Yufei Liu ◽  
Chen Yang ◽  
Zheyu Zhang ◽  
Haowen Jiang

Gut microbiota dysbiosis is related to cancer development and progression. Our previous study showed that Ruminococcus was more abundant in CRPC (Castration-resistant prostate cancer) than HSPC (Hormone-sensitive prostate cancer) individuals. Here, we determined the potential mechanism of microbiota dysbiosis in prostate cancer (PCa) progression. Metagenomics was used to verify the gut microbial discrepancies between CRPC and HSPC individuals. Fecal microbiota transplantation (FMT) was performed by transferring the fecal suspension of CRPC or HSPC individuals to TRAMP mice. Afterwards, the mice’s prostate histopathology and gut microbiota composition were determined. Since Ruminococcus was demonstrated to correlate with phospholipid metabolism, we used lipidomics to examine the mice’s fecal lipid profiles. The expression of LPCAT1 the key enzyme for phospholipid remodeling in mice prostate was also examined. Meanwhile, both microbial functions prediction and LPCAT1 GSEA analysis (Gene Set Enrichment Analysis) indicated DNA repair pathways, we further determined the expressions of RAD51 and DNA-PKcs in mice prostate. The results showed that gut Ruminococcus was significantly more abundant in CRPC individuals. FMT using CRPC feces accelerated mice’s PCa progression and increased their gut Ruminococcus abundance. Majority of fecal lipids including lysophosphatidylcholine and phosphatidylcholine were upregulated in CRPC FMT treated mice, accompanied with enhanced expressions of LPCAT1, RAD51, and DNA-PKcs in mice prostate. We reported an abundant colonization of Ruminococcus in the gut of CRPC individuals and mice receiving their fecal suspensions, and revealed the promotive capability of Ruminococcus in PCa progression via upregulating LPCAT1 and DNA repair protein expressions. The bacterium and its downstream pathways may become the targets of therapies for PCa in the future.

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 692
Author(s):  
Roosa Kaarijärvi ◽  
Heidi Kaljunen ◽  
Kirsi Ketola

Neuroendocrine plasticity and treatment-induced neuroendocrine phenotypes have recently been proposed as important resistance mechanisms underlying prostate cancer progression. Treatment-induced neuroendocrine prostate cancer (t-NEPC) is highly aggressive subtype of castration-resistant prostate cancer which develops for one fifth of patients under prolonged androgen deprivation. In recent years, understanding of molecular features and phenotypic changes in neuroendocrine plasticity has been grown. However, there are still fundamental questions to be answered in this emerging research field, for example, why and how do the prostate cancer treatment-resistant cells acquire neuron-like phenotype. The advantages of the phenotypic change and the role of tumor microenvironment in controlling cellular plasticity and in the emergence of treatment-resistant aggressive forms of prostate cancer is mostly unknown. Here, we discuss the molecular and functional links between neurodevelopmental processes and treatment-induced neuroendocrine plasticity in prostate cancer progression and treatment resistance. We provide an overview of the emergence of neurite-like cells in neuroendocrine prostate cancer cells and whether the reported t-NEPC pathways and proteins relate to neurodevelopmental processes like neurogenesis and axonogenesis during the development of treatment resistance. We also discuss emerging novel therapeutic targets modulating neuroendocrine plasticity.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1404
Author(s):  
Hye-Jin You ◽  
Byong-Chul You ◽  
Jong-Kwang Kim ◽  
Jae-Min Park ◽  
Bo-Seul Song ◽  
...  

Androgen signaling via the androgen receptor (AR) is involved in normal prostate development and prostate cancer progression. In addition to androgen binding, a variety of protein kinases, including cyclic AMP-dependent protein kinase A (PKA), can activate the AR. Although hormone deprivation, especially that of androgen, continues to be an important strategy for treating prostate cancer patients, the disease ultimately progresses to castration-resistant prostate cancer (CRPC), despite a continuous hormone-deprived environment. To date, it remains unclear which pathways in this progression are active and targetable. Here, we performed a proteomic analysis of VCaP cells stimulated with androgen or forskolin to identify proteins specific for androgen-induced and androgen-bypassing signaling, respectively. Patterns of differentially expressed proteins were quantified, and eight proteins showing significant changes in expression were identified. Functional information, including a Gene Ontology analysis, revealed that most of these proteins are involved in metabolic processes and are associated with cancer. The mRNA and protein expression of selected proteins was validated, and functional correlations of identified proteins with signaling in VCaP cells were assessed by measuring metabolites related to each enzyme. These analyses offered new clues regarding effector molecules involved in prostate cancer development, insights that are supported by the demonstration of increased expression levels of the eight identified proteins in prostate cancer patients and assessments of the progression-free interval. Taken together, our findings show that aberrant levels of eight proteins reflect molecular changes that are significantly regulated by androgen and/or PKA signaling pathways, suggesting possible molecular mechanisms of CRPC.


2021 ◽  
Vol 12 (24) ◽  
pp. 7349-7357
Author(s):  
Xuanrong Chen ◽  
Yi Shao ◽  
Wanqing Wei ◽  
Haishan Shen ◽  
Yang Li ◽  
...  

Oncotarget ◽  
2016 ◽  
Vol 7 (38) ◽  
pp. 61955-61969 ◽  
Author(s):  
Jingbo Qiao ◽  
Magdalena M. Grabowska ◽  
Ingrid S. Forestier-Roman ◽  
Janni Mirosevich ◽  
Thomas C. Case ◽  
...  

PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0218143 ◽  
Author(s):  
Maria Guirro ◽  
Andrea Costa ◽  
Andreu Gual-Grau ◽  
Pol Herrero ◽  
Helena Torrell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document