scholarly journals A Systematic Review to Clarify the Prognostic Values of CD44 and CD44+CD24- Phenotype in Triple-Negative Breast Cancer Patients: Lessons Learned and The Road Ahead

2021 ◽  
Vol 11 ◽  
Author(s):  
Mahdi Abdoli Shadbad ◽  
Negar Hosseinkhani ◽  
Zahra Asadzadeh ◽  
Afshin Derakhshani ◽  
Noora Karim Ahangar ◽  
...  

As a unique population of tumor bulk, cancer stem cells have been implicated in tumor relapse and chemoresistance in triple-negative breast cancer (TNBC). Therefore, understanding the phenotype of cancer stem cells can pave the way for introducing novel molecular targeted therapies for treating TNBC patients. Preclinical studies have identified CD44+CD24-/low as a cancer stem cell phenotype; however, clinical studies have reported seemingly controversial results regarding the prognostic values of CD44 and CD44+CD24-/low phenotype in TNBC patients. To critically review the clinicopathological significance and prognostic values of CD44 and CD44+CD24-/low phenotype in TNBC patients, the Scopus, Embase, PubMed, and Web of Science databases were systematically searched to obtain the relevant records published before 20 October 2020. Based on nine included studies, CD44 and CD44+CD24-/low phenotype are associated with inferior prognosis in TNBC patients. Moreover, these cancer stem cell markers have been associated with advanced tumor stage, tumor size, higher tumor grade, tumor metastasis, and lymphatic involvement in TNBC patients. Our evidence has also indicated that, unlike the treatment-naïve TNBC patients, the tumoral cells of chemoradiotherapy-treated TNBC patients can upregulate the CD44+CD24-/low phenotype and establish an inverse association with androgen receptor (AR), leading to the inferior prognosis of affected patients. In summary, CD44 and CD44+CD24-/low phenotype can be utilized to determine TNBC patients’ prognosis in the pathology department as a routine practice, and targeting these phenotypes can substantially improve the prognosis of TNBC patients.

Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6209
Author(s):  
Lin He ◽  
Neda Wick ◽  
Sharon Koorse Germans ◽  
Yan Peng

Triple negative breast cancer (TNBC) remains an aggressive disease due to the lack of targeted therapies and relatively low rate of response to chemotherapy, which is currently the main treatment modality for TNBC. Breast cancer stem cells (BCSCs) are a small subpopulation of breast tumors and recognized as drivers of tumorigenesis. TNBC tumors are characterized as being enriched for BCSCs. Studies have demonstrated the role of BCSCs as the source of metastatic disease and chemoresistance in TNBC. Multiple targets against BCSCs are now under investigation, with the considerations of either selectively targeting BCSCs or co-targeting BCSCs and non-BCSCs (majority of tumor cells). This review article provides a comprehensive overview of recent advances in the role of BCSCs in TNBC and the identification of cancer stem cell biomarkers, paving the way for the development of new targeted therapies. The review also highlights the resultant discovery of cancer stem cell targets in TNBC and offers summaries of ongoing clinical trials treating chemoresistant breast cancer. We aim to better understand the mutational landscape of BCSCs and explore potential molecular signaling pathways targeting BCSCs to overcome chemoresistance and prevent metastasis in TNBC, ultimately to improve the overall survival of patients with this devastating disease.


2015 ◽  
Vol 112 (45) ◽  
pp. E6215-E6223 ◽  
Author(s):  
Huimin Zhang ◽  
Haiquan Lu ◽  
Lisha Xiang ◽  
John W. Bullen ◽  
Chuanzhao Zhang ◽  
...  

Increased expression of CD47 has been reported to enable cancer cells to evade phagocytosis by macrophages and to promote the cancer stem cell phenotype, but the molecular mechanisms regulating CD47 expression have not been determined. Here we report that hypoxia-inducible factor 1 (HIF-1) directly activates transcription of the CD47 gene in hypoxic breast cancer cells. Knockdown of HIF activity or CD47 expression increased the phagocytosis of breast cancer cells by bone marrow-derived macrophages. CD47 expression was increased in mammosphere cultures, which are enriched for cancer stem cells, and CD47 deficiency led to cancer stem cell depletion. Analysis of datasets derived from thousands of patients with breast cancer revealed that CD47 expression was correlated with HIF target gene expression and with patient mortality. Thus, CD47 expression contributes to the lethal breast cancer phenotype that is mediated by HIF-1.


Tumor Biology ◽  
2018 ◽  
Vol 40 (8) ◽  
pp. 101042831879188 ◽  
Author(s):  
Fabian M Troschel ◽  
Nicolas Böhly ◽  
Katrin Borrmann ◽  
Timo Braun ◽  
Alexander Schwickert ◽  
...  

Effectively targeting cancer stem cells, a subpopulation of tumorigenic, aggressive, and radioresistant cells, holds therapeutic promise. However, the effects of the microRNA miR-142-3p, a small endogenous regulator of gene expression on breast cancer stem cells, have not been investigated. This study identifies the influence of miR-142-3p on mammary stemness properties and breast cancer radioresistance to establish its role in this setting. miR-142-3p precursor transfection was performed in MDA-MB-468, HCC1806, and MCF-7 cells, and stem cell markers CD44, CD133, ALDH1 activity and mammosphere formation were measured. β-catenin, the canonical wnt signaling effector protein, was quantified by Western blots and cell fluorescence assays both in miR-142-3p–overexpressing and anti–miR-142-3p–treated cells. Radiation response was investigated by colony formation assays. Levels of BRCA1, BRCA2, and Bod1 in miR-142-3p–overexpressing cells as well as expression of miR-142-3p, Bod1, KLF4, and Oct4 in sorted CD44+/CD24–/low cells were determined by quantitative polymerase chain reaction. miR-142-3p overexpression resulted in a strong decline in breast cancer stem cell characteristics with a decrease in CD44, CD133, ALDH1, Bod1, BRCA2, and mammosphere formation as well as reduced survival after irradiation. miR-142-3p expression was strongly reduced in sorted CD44+/CD24–/low stem cells, while Bod1, Oct4, and KLF4 were overexpressed. β-catenin levels strongly decreased after miR-142-3p overexpression, but not after anti–miR-142-3p treatment. We conclude that miR-142-3p downregulates cancer stem cell characteristics and radioresistance in breast cancer, mediated by a reduced role of β-catenin in miR-142-3p–overexpressing cells. miR-142-3p might therefore help to target cancer stem cells.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 528-528 ◽  
Author(s):  
J. C. Chang ◽  
X. Li ◽  
H. Wong ◽  
C. Creighton ◽  
S. G. Hilsenbeck ◽  
...  

528 Background: Recent evidence supports the existance of a rare subpopulation of ‘cancer stem cells‘ (CSCs) which is chemoresistant and capable of self-renewal and tumor-initiation, resulting in relapse and metastases. We hypothesized that residual breast tumors after conventional chemotherapy (CTx) are enriched for CSCs bearing CD44+/CD24- markers, and show increased self-renewal as demonstrated by mammosphere (MS) forming assays. Molecular pathways like Notch, Wnt, and the polycomb family that regulate normal mammary self-renewal may be in aberrant in CSCs. Methods: Paired breast cancer biopsies from 35 patients were obtained before and after 12 weeks of neoadjuvant CTx (docetaxel 100 mg/m2 or Adriamycin/Cytoxan 60/600 mg/m2, 4 cycles, q3weeks), digested by collagenase, stained with CD24/CD44/lineage antibodies, and analyzed by flow cytometry. MS assays were performed to measure self-renewal ability. Gene expression, using the Affymetrix U133 GeneChip platform, of cancer cells bearing CD44+/CD24- markers vs. all other sorted cells, and between secondary cancer MS vs. the primary bulk invasive cancers were analyzed. Results: CD44+/CD24- cells increased from a median of 4.8% to 14.8% after CTx (p<0.005). Increased self-renewal was demonstrated by an increase in MS capacity after CTx (p=0.03), with a positive correlation between the number of CD44+/24- cells and MS assays (R=0.8, p<0.05). Common molecular pathways shared by CD44+/CD24- cells and MS show increased expression in normal self-renewal pathways - polycomb family (PCGF5), Notch (MAML2), FOXP1, and BBX. In addition, genes governing alternative splicing were increased, including a non-coding RNA (MALAT1) of unknown function, and RNA splicing factors (SFRS3, SFRS21P, SFRS4). Conclusions: Our results with an increase in cells bearing stem cell markers, and increased MS formation of residual tumors provide the first strong clinical evidence for the existance of therapy-resistant cancer stem cells. Post-transcriptional regulation may play a crucial role in modifying gene function involved in cancer stem cell self-renewal. Clinical trials targeting these newly identified pathways may eradicate residual disease and improved cure rates for many breast cancer patients. [Table: see text]


2020 ◽  
Author(s):  
Lufei Sui ◽  
Suming Wang ◽  
Roberto K. Rodriguez ◽  
Danielle Sim ◽  
Nandita Bhattacharya ◽  
...  

AbstractCurrent treatment of triple negative breast cancer patients is hindered by a high incidence of chemoresistance (30-50%). The prevailing theory is that resistance and subsequent recurrence is driven by cancer stem cells. Unfortunately, the functional characterization of cancer stem cells at the molecular level is still incomplete. We show here, that within the canonical breast cancer stem cell population, a subset of cells characterized by high Notch1 expression possesses the tumor-initiating property associated with cancer stem cells. Moreover, the tumor initiating property of these high Notch1-expressing breast cancer stem cells is mediated by a cleavage independent Notch signaling pathway culminating in the repression of SIRT1. Of note, the Notch1-mediated repression of SIRT1 is required not only for tumor initiation, but also for chemoresistance in breast cancer stem cells. Strikingly, inhibition of SIRT1 obviates the requirement for Notch1, marking the first example of conferring cancer stem cell function by inhibiting the activity of a single protein. We also demonstrate that progenitor-like mammary epithelial cells, which possess both luminal and basal properties, are also characterized by high Notch1 expression and repression of SIRT1 via the non-canonical pathway. These findings provide the first functional mechanistic requirements for tumor initiation by breast cancer stem cells and suggest that activation of the non-canonical Notch1 pathway is hardwired into tumor-initiating progenitor cells and thus a prerequisite for tumor initiation.Statement of SignificanceWe demonstrate that chemoresistant and tumor-initiating properties of breast cancer stem cells are driven by repression of SIRT1 via non-canonical Notch signaling, suggesting a novel therapeutic strategy for triple negative breast cancer.


2017 ◽  
Author(s):  
Aurélie S. Cazet ◽  
Mun N. Hui ◽  
Benjamin L. Elsworth ◽  
Sunny Z. Wu ◽  
Daniel Roden ◽  
...  

ABSTRACTThe cellular and molecular basis of stromal cell recruitment, activation and crosstalk in carcinomas is poorly understood, limiting the development of targeted anti-stromal therapies. In mouse models of triple negative breast cancer (TNBC), Hh ligand produced by neoplastic cells reprogrammed cancer-associated fibroblast (CAF) gene expression, driving tumor growth and metastasis. Hh-activated CAFs upregulated expression of FGF5 and production of fibrillar collagen, leading to FGFR and FAK activation in adjacent neoplastic cells, which then acquired a stem-like, drug-resistant phenotype. Treatment with smoothened inhibitors (SMOi) reversed these phenotypes. Stromal treatment of TNBC patient-derived xenograft (PDX) models with SMOi downregulated the expression of cancer stem cell markers and sensitized tumors to docetaxel, leading to markedly improved survival and reduced metastatic burden. In the phase I clinical trial EDALINE, 3 of 12 patients with metastatic TNBC derived clinical benefit from combination therapy with the SMOi Sonidegib and docetaxel chemotherapy, with one patient experiencing a complete response. Markers of pathway activity correlated with response. These studies identify Hh signaling to CAFs as a novel mediator of cancer stem cell plasticity and an exciting new therapeutic target in TNBC.SIGNIFICANCECompared to other breast cancer subtypes, TNBCs are associated with significantly worse patient outcomes. Standard of care systemic treatment for patients with non-BRCA1/2 positive TNBC is cytotoxic chemotherapy. However, the failure of 70% of treated TNBCs to attain complete pathological response reflects the relative chemoresistance of these tumors. New therapeutic strategies are needed to improve patient survival and quality of life. Here, we provide new insights into the dynamic interactions between heterotypic cells within a tumor. Specifically, we establish the mechanisms by which CAFs define cancer cell phenotype and demonstrate that the bidirectional CAF-cancer cell crosstalk can be successfully targeted in mice and humans using anti-stromal therapy.


2013 ◽  
Author(s):  
Kumiko Kida ◽  
Takashi Ishikawa ◽  
Akimitsu Yamada ◽  
Kazuhiro Shimada ◽  
Kazutaka Narui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document