scholarly journals Long Non-Coding RNA LINC00152 Regulates Self-Renewal of Leukemia Stem Cells and Induces Chemo-Resistance in Acute Myeloid Leukemia

2021 ◽  
Vol 11 ◽  
Author(s):  
Chunhong Cui ◽  
Yan Wang ◽  
Wenjie Gong ◽  
Haiju He ◽  
Hao Zhang ◽  
...  

Relapse of acute myeloid leukemia (AML) has a very poor prognosis and remains a common cause of treatment failure in patients with this disease. AML relapse is partially driven by the chemoresistant nature of leukemia stem cells (LSCs), which remains poorly understood, and our study aimed at elucidating the underlying mechanism. Accumulating evidences show that long noncoding RNAs (lncRNAs) play a crucial role in AML development. Herein, the lncRNA, LINC00152, was identified to be highly expressed in CD34+ LSCs and found to regulate the self-renewal of LSCs derived from AML patients. Importantly, LINC00152 upregulation was correlated with the expression of 16 genes within a 17-gene LSC biomarker panel, which contributed to the accurate prediction of initial therapy resistance in AML. Knockdown of LINC00152 markedly increased the drug sensitivity of leukemia cells. Furthermore, LINC00152 expression was found to be correlated with poly (ADP-ribose) polymerase 1 (PARP1) expression in AML, whereas LINC00152 knockdown significantly decreased the expression of PARP1. Upregulation of LINC00152 or PARP1 was associated with poor prognosis in AML patients. Collectively, these data highlight the importance and contribution of LINC00152 in the regulation of self-renewal and chemoresistance of LSCs in AML.

2020 ◽  
Author(s):  
Jonason Yang ◽  
Nunki Hassan ◽  
Sheng Xiang Franklin Chen ◽  
Jayvee Datuin ◽  
Jenny Y. Wang

Acute myeloid leukemia (AML) is a difficult-to-treat blood cancer. A major challenge in treating patients with AML is relapse, which is caused by the persistence of leukemia stem cells (LSCs). Self-renewal is a defining property of LSCs and its deregulation is crucial for re-initiating a new leukemia after chemotherapy. Emerging therapeutic agents inhibiting aberrant self-renewal pathways, such as anti-RSPO3 monoclonal antibody discovered in our recent study, present significant clinical potential that may extend beyond the scope of leukemogenesis. In this chapter, we provide an overview of normal and malignant hematopoietic stem cells, discuss current treatments and limitations, and review key self-renewal pathways and potential therapeutic opportunities in AML.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 16-17
Author(s):  
Qiang Liu ◽  
Olga I. Gan ◽  
Gabriela Krivdova ◽  
Aaron Trotman-Grant ◽  
Stephanie M. Dobson ◽  
...  

Acute myeloid leukemia (AML) is an aggressive hematologic malignancy with poor survival, especially in older patients. Despite high remission rates after chemotherapy, relapse and death are frequent due to persistence of leukemia stem cells (LSCs), which possess properties linked to therapy resistance. Thus, there is an urgent need for a deeper understanding of the unique properties of LSCs. MicroRNAs (miRNAs) are non-coding RNAs that decrease expression of their target mRNAs by post-translational silencing. miRNA profiling of human AML samples fractionated based on LSC activity revealed that miR-125b is expressed at significantly higher levels on cell fractions enriched in LSCs. To evaluate the role of miR-125b in LSCs, expression of miR-125b was enforced in a hierarchical AML model cell line (OCI-AML-8227). miR-125b overexpression (OE) resulted in a significantly lower percentage of CD14+CD15+ differentiated myeloblasts (Figure 1A) and enhanced clonogenic potential in vitro (Figure 1B). Xenotransplantation of four AML patient samples with miR-125b OE revealed a significant increase in the proportion of CD117+ cells, a marker of hematopoietic and leukemic progenitors (Figure 1C). Secondary transplantation of cells harvested from primary engrafted mice at limiting dilution demonstrated a marked increase in LSC frequency with miR-125b OE compared to controls for the two AML samples tested (Figure 1D). Together, these data strongly suggest that miR-125b enhances the self-renewal of LSCs. To investigate the mechanisms by which miR-125b enhances self-renewal, proteomic analysis of miR-125b-OE Ba/F3 cells as well as in silico target prediction were performed and identified PTPN18 as a top putative target for miR-125b. PTPN18 is a tyrosine phosphatase that has been reported to dephosphorylate auto-phosphorylated kinases such as Her2 and Abl to prevent their activation. To evaluate whether PTPN18 OE can rescue the effects miR-125b on LSCs, we carried out transduction of an AML patient sample with control, miR-125b OE, PTPN18 OE, or both miR-125b and PTPN18 OE vectors followed by xenotransplantation. Similar to previous findings, miR-125b OE alone significantly reduced the frequency of CD11b+CD15+ differentiated myeloblasts. Co-transduction of miR-125b/PTPN18 OE vectors resulted in generation of significantly more CD11b+CD15+ cells compared to miR-125b OE alone (Figure 1E), suggesting that suppression of PTPN18 contributes to miR-125b-mediated enhancement of LSC self-renewal. To identify putative phosphotyrosines that might be altered through the miR-125b-PTPN18 signalling axis, we performed immunoprecipitation of phosphotyrosines followed by mass spectrometry in miR-125b-OE Ba/F3 cells and identified increased GSK3 tyrosine phosphorylation as a top target. Additionally, miR-125b OE was confirmed to enhance GSK3 tyrosine phosphorylation, whereas PTPN18 OE reduced it (Figure 1F), together strongly suggesting that miR-125b could enhance tyrosine phosphorylation of GSK3 by silencing PTPN18. GSK3A and GSK3B (GSK3A/B) are paralogous genes that share a high degree of sequence homology and belong to the glycogen synthase kinase 3 (GSK3) family. Tyrosine phosphorylation activates the kinase activity of GSK3, whereas serine phosphorylation inactivates it. We recently identified GSK inhibitors as top candidates targeting LSCs in a stemness-based drug screen using OCI-AML-8227 cells (data not shown). Treatment of OCI-AML-8227 cells with two selective inhibitors of GSK3 selectively reduced the proportion of CD34+ cells while concomitantly increasing expression of myeloid markers CD14 and CD15 (Figure 1G). Overall, our results support an important functional role for PTPN18 and GSK3 in LSC function, and present a potential novel therapeutic target against LSCs. This study highlights the importance of understanding the role of miRNAs and may identify a new druggable vulnerability in LSCs that could lead to the development of new treatment options for AML patients. Figure 1 Disclosures Dick: Bristol-Myers Squibb/Celgene: Research Funding. Wang:Trilium Therapeutics: Patents & Royalties.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 31-31
Author(s):  
Nunki Hassan ◽  
Hangyu Yi ◽  
Lucie Gaspard-Boulinc ◽  
Franklin Chen ◽  
Jayvee Datuin ◽  
...  

Acute myeloid leukemia (AML) is a heterogenous malignancy, where the persistence of chemo-resistant leukemia stem cells (LSCs) contributes to disease relapse. We have previously demonstrated the clinical significance of WNT/β-catenin signaling in driving AML LSCs (Science, 327:1650-1653, 2010; Cancer Cell, 38:1-16, 2020). In this study, we uncover that GADD45a (growth arrest and DNA-damage inducible protein) is an essential regulator of β-catenin signaling pathway and its loss promotes LSC function and leukemia progression. Transgenic knockout of Gadd45a led to a progressive increase in aberrant self-renewal and leukemogenesis in vivo. Gadd45a-/- leukemic cells developed a more aggressive leukemia with a shorter latency than Gadd45a+/+ cells in mice, indicating the involvement of Gadd45a loss in AML initiation and progression. Subsequent serial transplantation experiments showed that Gadd45a deletion enhanced LSC self-renewal in vivo. In agreement with our findings in murine LSCs, deletion of GADD45a by CRISPR/Cas9 in AML patient-derived xenograft (PDX) cells revealed increased engraftment and tumor burden in NSG mice. Consistent with our phenotypic observations, knockout of GADD45a increased βcatenin activity and key WNT/self-renewal target genes in human AML cells. In addition, our cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) data showed that GADD45a deletion in patient-derived LSCs was associated with cell metabolism, reactive oxygen species and tumor progression, as well as poor patient outcomes in AML. Further studies are being conducted to evaluate transcriptional mechanisms discovered by our single-cell sequencing. Taken together, this study is the first to demonstrate that GADD45a loss promotes LSC potential and consequently enhances tumor growth in murine and PDX models of AML, thus showcasing GADD45a as a promising therapeutic target in AML. References: Wang Y, Krivtsov AV, Sinha AU, et al. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science. 2010;327:1650-1653. Salik B, Yi H, Hassan N, et al. Targeting RSPO-LGR4 signaling for leukemia stem cell eradication in acute myeloid leukemia. Cancer Cell. 2020; 38:1-16. Disclosures No relevant conflicts of interest to declare.


2016 ◽  
Vol 13 (2) ◽  
pp. 248-259 ◽  
Author(s):  
Hong-Sheng Zhou ◽  
Hong-Sheng Zhou ◽  
Bing Z. Carter ◽  
Michael Andreeff ◽  
Bing Z. Carter ◽  
...  

Cell Reports ◽  
2020 ◽  
Vol 31 (9) ◽  
pp. 107688 ◽  
Author(s):  
Josephine Wesely ◽  
Andriana G. Kotini ◽  
Franco Izzo ◽  
Hanzhi Luo ◽  
Han Yuan ◽  
...  

2010 ◽  
Vol 207 (3) ◽  
pp. 475-489 ◽  
Author(s):  
Yoon-Chi Han ◽  
Christopher Y. Park ◽  
Govind Bhagat ◽  
Jinping Zhang ◽  
Yulei Wang ◽  
...  

The function of microRNAs (miRNAs) in hematopoietic stem cells (HSCs), committed progenitors, and leukemia stem cells (LSCs) is poorly understood. We show that miR-29a is highly expressed in HSC and down-regulated in hematopoietic progenitors. Ectopic expression of miR-29a in mouse HSC/progenitors results in acquisition of self-renewal capacity by myeloid progenitors, biased myeloid differentiation, and the development of a myeloproliferative disorder that progresses to acute myeloid leukemia (AML). miR-29a promotes progenitor proliferation by expediting G1 to S/G2 cell cycle transitions. miR-29a is overexpressed in human AML and, like human LSC, miR-29a-expressing myeloid progenitors serially transplant AML. Our data indicate that miR-29a regulates early hematopoiesis and suggest that miR-29a initiates AML by converting myeloid progenitors into self-renewing LSC.


Sign in / Sign up

Export Citation Format

Share Document