Ex Vivo Assays to Study Self-Renewal and Long-Term Expansion of Genetically Modified Primary Human Acute Myeloid Leukemia Stem Cells

Author(s):  
Jan Jacob Schuringa ◽  
Hein Schepers
Blood ◽  
2017 ◽  
Vol 129 (12) ◽  
pp. 1577-1585 ◽  
Author(s):  
Daniel Thomas ◽  
Ravindra Majeti

Abstract Evidence of human acute myeloid leukemia stem cells (AML LSCs) was first reported nearly 2 decades ago through the identification of rare subpopulations of engrafting cells in xenotransplantation assays. These AML LSCs were shown to reside at the apex of a cellular hierarchy that initiates and maintains the disease, exhibiting properties of self-renewal, cell cycle quiescence, and chemoresistance. This cancer stem cell model offers an explanation for chemotherapy resistance and disease relapse and implies that approaches to treatment must eradicate LSCs for cure. More recently, a number of studies have both refined and expanded our understanding of LSCs and intrapatient heterogeneity in AML using improved xenotransplant models, genome-scale analyses, and experimental manipulation of primary patient cells. Here, we review these studies with a focus on the immunophenotype, biological properties, epigenetics, genetics, and clinical associations of human AML LSCs and discuss critical questions that need to be addressed in future research.


2021 ◽  
Vol 11 ◽  
Author(s):  
Chunhong Cui ◽  
Yan Wang ◽  
Wenjie Gong ◽  
Haiju He ◽  
Hao Zhang ◽  
...  

Relapse of acute myeloid leukemia (AML) has a very poor prognosis and remains a common cause of treatment failure in patients with this disease. AML relapse is partially driven by the chemoresistant nature of leukemia stem cells (LSCs), which remains poorly understood, and our study aimed at elucidating the underlying mechanism. Accumulating evidences show that long noncoding RNAs (lncRNAs) play a crucial role in AML development. Herein, the lncRNA, LINC00152, was identified to be highly expressed in CD34+ LSCs and found to regulate the self-renewal of LSCs derived from AML patients. Importantly, LINC00152 upregulation was correlated with the expression of 16 genes within a 17-gene LSC biomarker panel, which contributed to the accurate prediction of initial therapy resistance in AML. Knockdown of LINC00152 markedly increased the drug sensitivity of leukemia cells. Furthermore, LINC00152 expression was found to be correlated with poly (ADP-ribose) polymerase 1 (PARP1) expression in AML, whereas LINC00152 knockdown significantly decreased the expression of PARP1. Upregulation of LINC00152 or PARP1 was associated with poor prognosis in AML patients. Collectively, these data highlight the importance and contribution of LINC00152 in the regulation of self-renewal and chemoresistance of LSCs in AML.


2020 ◽  
Author(s):  
Jonason Yang ◽  
Nunki Hassan ◽  
Sheng Xiang Franklin Chen ◽  
Jayvee Datuin ◽  
Jenny Y. Wang

Acute myeloid leukemia (AML) is a difficult-to-treat blood cancer. A major challenge in treating patients with AML is relapse, which is caused by the persistence of leukemia stem cells (LSCs). Self-renewal is a defining property of LSCs and its deregulation is crucial for re-initiating a new leukemia after chemotherapy. Emerging therapeutic agents inhibiting aberrant self-renewal pathways, such as anti-RSPO3 monoclonal antibody discovered in our recent study, present significant clinical potential that may extend beyond the scope of leukemogenesis. In this chapter, we provide an overview of normal and malignant hematopoietic stem cells, discuss current treatments and limitations, and review key self-renewal pathways and potential therapeutic opportunities in AML.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1318-1318
Author(s):  
George S. Laszlo ◽  
Jack M. Lionberger ◽  
Kimberly H. Harrington ◽  
Chelsea J. Gudgeon ◽  
Megan Othus ◽  
...  

Abstract Background The cellular origin of human acute myeloid leukemia (AML) remains controversial. Limited G6PD-based X chromosome inactivation (XCI) studies suggested heterogeneity of leukemic stem cells (LSCs), with evidence of some AMLs resulting from multipotent CD34+/CD33- stem cells and others emerging from, or predominantly involving, lineage-committed CD34+/CD33+ myeloid precursors. So far, the difficulty of growing stem/progenitor cells from primary AML specimens has provided a major challenge for precise study of human LSCs and clinical implications of their heterogeneity. To overcome this, we developed a novel co-culture method to support long-term in vitro growth of primary AML specimens together with a highly sensitive XCI assay for isolated immature progenitor cells. Methods Diagnostic bone marrow specimens from 50 adult females with newly diagnosed AML were obtained from the SWOG Sample Repository. All patients received standard induction therapies without the CD33-targeting immunoconjugate, gemtuzumab ozogamicin. Human umbilical vein endothelial cells, transduced with a lentiviral construct encoding the open reading frame 1 of the early region 4 of adenovirus to provide growth factor/serum-independence, were co-cultured with aliquots of flow cytometrically-isolated CD34+/CD33- and CD34+/CD33+ cells in medium containing the aryl hydrocarbon receptor antagonist, StemReginin-1. Cultures were replenished with fresh medium weekly and kept in hypoxia for up to 8 weeks, and defined fractions plated after 4, 6, and 8 weeks for colony-forming cell assays. Resulting colony forming units-granulocyte and/or macrophage (CFU-GMs) were harvested and individually assessed for XCI via methylation-sensitive PCR-based analysis of a polymorphic short tandem repeat (STR) in the X-linked human androgen-receptor gene (HUMARA). Specimen growth was considered if it yielded ≥5 CFU-GMs after ≥4 weeks of co-culture. Specimens with >75% disease-specific CFU-GMs were considered clonal. Results Among the 50 specimens, 45 (90%) were informative with regard to HUMARA STR, allowing clonal assessment of isolated cell progeny. Sixteen (35.6%) yielded CFU-GMs derived from CD34+/CD33- cells after long-term (≥4 weeks) co-culture sufficient for clonal analyses, whereas the remaining samples yielded either no growth (n=22) or insufficient CFU-GM growth (n=8) from this starting cell population. Five of the 16 specimens with sufficient CFU-GM growth derived from CD34+/CD33- cells (31.3%) yielded colonies consistent with a polyclonal growth pattern, and 3 samples without sufficient CFU-GM growth derived from CD34+/CD33- cells yielded colonies from unsorted cells that were consistent with a polyclonal growth pattern; these 8 leukemias were cytogenetically classified as favorable (n=3) or intermediate-risk (n=5, including 2 with normal karyotype and NPM1 but not FLT3/ITD mutation). In contrast, 11 specimens yielded CFU-GMs growth derived from CD34+/CD33- with a pattern consistent with clonal growth. The complete remission rate was slightly but statistically non-significantly higher among patients whose specimens yielded polyclonal CFU-GMs derived from CD34+/CD33- cells relative to those with clonal progenitor growth (87.5% vs. 63.6%, P=0.34). More importantly, however, the overall and relapse-free survival of patients whose specimens yielded polyclonal CFU-GMs derived from CD34+/CD33- or unsorted cells was significantly longer than that for patients whose specimens yielded a clonal progenitor growth pattern after long-term culture of CD34+/CD33- cells (P=0.0006 and P=0.0054, respectively; Figure 1); restriction of this analysis to the 16 specimens with sufficient CFU-GM growth from CD34+/CD33- cells did not change this outcome difference (e.g. hazard ratio for overall survival for restricted dataset: 0.13 [95% confidence interval: 0.06-0.72] vs 0.08 [0.04-0.44]). Conclusion Our novel co-culture method allows for the study of progenitor/stem cell involvement in a significant portion of human AMLs. Our data suggest that a subset of adult AMLs emerges from, or predominantly involves, only lineage-committed CD34+/CD33+ myeloid precursors but not the less mature CD34+/CD33- precursors. This subset, which is comprised of AMLs with diverse cytogenetic/molecular abnormalities, is characterized by an excellent outcome with intensive chemotherapy. Disclosures: No relevant conflicts of interest to declare.


Cell ◽  
2009 ◽  
Vol 138 (2) ◽  
pp. 286-299 ◽  
Author(s):  
Ravindra Majeti ◽  
Mark P. Chao ◽  
Ash A. Alizadeh ◽  
Wendy W. Pang ◽  
Siddhartha Jaiswal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document