scholarly journals CALR-TLR4 Complex Inhibits Non-Small Cell Lung Cancer Progression by Regulating the Migration and Maturation of Dendritic Cells

2021 ◽  
Vol 11 ◽  
Author(s):  
Ruo Chen ◽  
Min Huang ◽  
Xu Yang ◽  
Xiao-Hong Chen ◽  
Ming-Yan Shi ◽  
...  

BackgroundLung cancer is a common malignant tumor that threatens human life and is associated with high morbidity and mortality rates. Calreticulin (CALR) is a antigen characteristic of immunogenic cell death in non-small cell lung cancer (NSCLC), which is closely related to anti-tumor immunity, but its specific mechanism in anti-tumor immunity remains unclear.MethodsImmunohistochemical staining was performed to detect the expression of CALR and dendritic cell-lysosome-associated membrane glycoprotein (DC-LAMP) in NSCLC tissues. The cell supernatant was used to induce migration and maturation of dendritic cells (DCs). Western blot and real-time PCR were used to investigate the corresponding molecule expression in the CALR-Toll-like receptor 4 (TLR4)-MyD88 signaling pathway. In vivo experiments were conducted to evaluate the role of mCALR in lung cancer progression.ResultsThe expression of CALR on NSCLC cell membrane (mCALR) and DC infiltration in NSCLC were positively correlated and were closely related to the prognosis of NSCLC patients. Moreover, mCALR facilitated the migration and maturation of DCs by activating CALR-TLR4-MyD88 signaling and increasing the secretion of TNFα and CCL19, which was inhibited by the loss of TLR4. In vivo experiments demonstrated that mCALR inhibited lung cancer progression by facilitating DC infiltration in lung cancer tissues.ConclusionOur study explores the function and mechanism of the CALR-TLR4 complex in DC migration and maturation and investigates the inhibitory effect of the CALR-TLR4 complex on lung cancer progression, providing a theoretical basis and ideas for immunotherapy of NSCLC.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Nan Feng ◽  
Zhi Guo ◽  
Xiaokang Wu ◽  
Ying Tian ◽  
Yue Li ◽  
...  

Abstract Background Chemoresistance limits the therapeutic effect of cisplatin (DDP) on non-small cell lung cancer (NSCLC). Circular RNAs (circRNAs) function as important regulators in chemoresistance. This study aimed to explore the regulation of circRNA Phosphatidylinositol-4-Phosphate 5-Kinase Type 1 Alpha (circ_PIP5K1A) in DDP resistance. Methods The expression analysis of circ_PIP5K1A, micoRNA-493-5p (miR-493-5p) and Rho Associated Coiled-Coil Containing Protein Kinase 1 (ROCK1) was conducted through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Cell sensitivity was determined using 3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyl tetrazolium bromide (MTT) assay. Cell proliferation and cell viability were evaluated by colony formation assay and MTT assay, respectively. Cell cycle and apoptosis detection was performed via flow cytometry. Cell motility was examined by transwell migration or invasion assay. Dual-luciferase reporter assay was applied to confirm the target binding. ROCK1 protein level was assayed via Western blot. In vivo assay was carried out using xenograft model in mice. Results Circ_PIP5K1A level was abnormally increased in DDP-resistant NSCLC tissues and cells. Silencing circ_PIP5K1A reduced DDP resistance, proliferation, cell cycle progression and cell motility in DDP-resistant NSCLC cells. Circ_PIP5K1A directly interacted with miR-493-5p in NSCLC cells. The function of circ_PIP5K1A was dependent on the negative regulation of miR-493-5p. MiR-493-5p directly targeted ROCK1 and circ_PIP5K1A regulated the ROCK1 level via acting as a sponge of miR-493-5p. Overexpression of miR-493-5p inhibited chemoresistance and cancer progression by downregulating ROCK1 expression in DDP-resistant NSCLC cells. Circ_PIP5K1A regulated DDP sensitivity in vivo via the miR-493-5p/ROCK1 axis. Conclusion These findings suggested that circ_PIP5K1A upregulated the ROCK1 expression to promote DDP resistance and cancer progression in NSCLC by sponging miR-493-5p.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Botai Li ◽  
Lili Zhu ◽  
Chunlai Lu ◽  
Cun Wang ◽  
Hui Wang ◽  
...  

AbstractCircular RNAs (circRNA) are a class of covalently closed single-stranded RNAs that have been implicated in cancer progression. Here we identify circNDUFB2 to be downregulated in non-small cell lung cancer (NSCLC) tissues, and to negatively correlate with NSCLC malignant features. Elevated circNDUFB2 inhibits growth and metastasis of NSCLC cells. Mechanistically, circNDUFB2 functions as a scaffold to enhance the interaction between TRIM25 and IGF2BPs, a positive regulator of tumor progression and metastasis. This TRIM25/circNDUFB2/IGF2BPs ternary complex facilitates ubiquitination and degradation of IGF2BPs, with this effect enhanced by N6-methyladenosine (m6A) modification of circNDUFB2. Moreover, circNDUFB2 is also recognized by RIG-I to activate RIG-I-MAVS signaling cascades and recruit immune cells into the tumor microenvironment (TME). Our data thus provide evidences that circNDUFB2 participates in the degradation of IGF2BPs and activation of anti-tumor immunity during NSCLC progression via the modulation of both protein ubiquitination and degradation, as well as cellular immune responses.


2021 ◽  
Vol 22 (24) ◽  
pp. 13335
Author(s):  
Jiayu Zou ◽  
Li Wang ◽  
Hailin Tang ◽  
Xiuxiu Liu ◽  
Fu Peng ◽  
...  

As a main subtype of lung cancer, the current situation of non-small cell lung cancer (NSCLC) remains severe worldwide with a 19% survival rate at 5 years. As the conventional therapy approaches, such as chemotherapy, radiotherapy, targeted therapy, and immunotherapy, gradually develop into therapy resistance, searching for a novel therapeutic strategy for NSCLC is urgent. Ferroptosis, an iron-dependent programmed necrosis, has now been widely considered as a key factor affecting the tumorigenesis and progression in various cancers. Focusing on its effect in NSCLC, in different situations, ferroptosis can be triggered or restrained. When ferroptosis was induced in NSCLC, it was available to inhibit the tumor progression both in vitro and in vivo. The dominating mechanism was due to a regulation of the classic ferroptosis-repressed GSH-dependent GPX4 signaling pathway instead of other fractional regulating signal axes that regulated ferroptosis via impacting on the ROS, cellular iron levels, etc. In terms of the prevention of ferroptosis in NSCLC, an GSH-independent mechanism was also discovered, interestingly exhibiting the same upstream as the GPX4 signaling. In addition, this review summarizes the progression of ferroptosis in NSCLC and elaborates their association and specific mechanisms through bioinformatics analysis with multiple experimental evidence from different cascades. Finally, this review also points out the possibility of ferroptosis working as a novel strategy for therapy resistance in NSCLC, emphasizing its therapeutic potential.


2021 ◽  
Vol 25 (6) ◽  
pp. 2994-3005
Author(s):  
Ying Lu ◽  
Shanshan Yu ◽  
Guangxue Wang ◽  
Zuan Ma ◽  
Xuelian Fu ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 5649
Author(s):  
Yi-Chun Chao ◽  
Kang-Yun Lee ◽  
Sheng-Ming Wu ◽  
Deng-Yu Kuo ◽  
Pei-Wei Shueng ◽  
...  

Non-small cell lung cancer (NSCLC) patients harboring a KRAS mutation have unfavorable therapeutic outcomes with chemotherapies, and the mutation also renders tolerance to immunotherapies. There is an unmet need for a new strategy for overcoming immunosuppression in KRAS-mutant NSCLC. The recently discovered role of melatonin demonstrates a wide spectrum of anticancer impacts; however, the effect of melatonin on modulating tumor immunity is largely unknown. In the present study, melatonin treatment significantly reduced cell viability accompanied by inducing cell apoptosis in KRAS-mutant NSCLC cell lines including A549, H460, and LLC1 cells. Mechanistically, we found that lung cancer cells harboring the KRAS mutation exhibited a higher level of programmed death ligand 1 (PD-L1). However, treatment with melatonin substantially downregulated PD-L1 expressions in both the presence and absence of interferon (IFN)-γ stimulation. Moreover, KRAS-mutant lung cancer cells exhibited higher Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) levels, and PD-L1 expression was positively correlated with YAP and TAZ in lung cancer cells. Treatment with melatonin effectively suppressed YAP and TAZ, which was accompanied by downregulation of YAP/TAZ downstream gene expressions. The combination of melatonin and an inhibitor of YAP/TAZ robustly decreased YAP and PD-L1 expressions. Clinical analysis using public databases revealed that PD-L1 expression was positively correlated with YAP and TAZ in patients with lung cancer, and PD-L1 overexpression suggested poor survival probability. An animal study further revealed that administration of melatonin significantly inhibited tumor growth and modulated tumor immunity in a syngeneic mouse model. Together, our data revealed a novel antitumor mechanism of melatonin in modulating the immunosuppressive tumor microenvironment by suppressing the YAP/PD-L1 axis and suggest the therapeutic potential of melatonin for treating NSCLC.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Jianjiao Ni ◽  
Xiaofei Zhang ◽  
Juan Li ◽  
Zhiqin Zheng ◽  
Junhua Zhang ◽  
...  

AbstractBone is a frequent metastatic site of non-small cell lung cancer (NSCLC), and bone metastasis (BoM) presents significant challenges for patient survival and quality of life. Osteolytic BoM is characterised by aberrant differentiation and malfunction of osteoclasts through modulation of the TGF-β/pTHrP/RANKL signalling pathway, but its upstream regulatory mechanism is unclear. In this study, we found that lncRNA-SOX2OT was highly accumulated in exosomes derived from the peripheral blood of NSCLC patients with BoM and that patients with higher expression of exosomal lncRNA-SOX2OT had significantly shorter overall survival. Additionally, exosomal lncRNA-SOX2OT derived from NSCLC cells promoted cell invasion and migration in vitro, as well as BoM in vivo. Mechanistically, we discovered that NSCLC cell-derived exosomal lncRNA-SOX2OT modulated osteoclast differentiation and stimulated BoM by targeting the miRNA-194-5p/RAC1 signalling axis and TGF-β/pTHrP/RANKL signalling pathway in osteoclasts. In conclusion, exosomal lncRNA-SOX2OT plays a crucial role in promoting BoM and may serve as a promising prognostic biomarker and treatment target in metastatic NSCLC.


Sign in / Sign up

Export Citation Format

Share Document