scholarly journals 68Ga-Labeled GX1 Dimer: A Novel Probe for PET/Cerenkov Imaging Targeting Gastric Cancer

2021 ◽  
Vol 11 ◽  
Author(s):  
Jipeng Yin ◽  
Bo Xin ◽  
Mingru Zhang ◽  
Xiaoli Hui ◽  
Na Chai ◽  
...  

PurposeTo synthesize the dimer of GX1 and identify whether its affinity and targeting are better than those of GX1. To prepare 68Ga-DOTA-KEK-(GX1)2 and to apply it to PET and Cerenkov imaging of gastric cancer.Methods68Ga-DOTA-KEK-(GX1)2 was prepared, and the labeling yield and stability were determined. Its specificity and affinity were verified using an in vitro cell binding assay and competitive inhibition test, cell immunofluorescence, and cell uptake and efflux study. Its tumor-targeting ability was determined by nano PET/CT and Cerenkov imaging, standardized uptake value (SUV), signal-to-background ratio (SBR) quantification, and a biodistribution study in tumor-bearing nude mice.Results68Ga-DOTA-KEK-(GX1)2 was successfully prepared, and the labeling yield was more than 97%. It existed stably for 90 min in serum. The binding of 68Ga-DOTA-KEK-(GX1)2 to cocultured HUVECs (Co-HUVECs) was higher than that to human umbilical vein endothelial cells (HUVECs), BGC823 cells, and GES cells. It was also higher than that of 68Ga-DOTA-GX1, indicating that the dimer did improve the specificity and affinity of GX1. The binding of KEK-(GX1)2 to Co-HUVECs was significantly higher than that of GX1. Additionally, the uptake of 68Ga-DOTA-KEK-(GX1)2 by Co-HUVECs was higher than that of 68Ga-DOTA-GX1 and reached a maximum at 60 min. Nano PET/CT and Cerenkov imaging showed that the tumor imaging of the nude mice injected with 68Ga-DOTA-KEK-(GX1)2 was clear, and the SUV and SBR value of the tumor sites were significantly higher than those of the nude mice injected with 68Ga-DOTA-GX1, indicating that the probe had better targeting in vivo. Finally, the biodistribution showed quantitatively that when organs such as the kidney and liver metabolized rapidly, the radioactivity of the tumor site of the nude mice injected with 68Ga-DOTA-KEK-(GX1)2 decreased relatively slowly. At the same time, the percentage of injected dose per gram (%ID/g) of the tumor site was higher than that of other normal organs except the liver and kidney at 60 min, which indicated that the tumor had good absorption of the probe.ConclusionGX1 was modified successfully, and the in vivo and in vitro properties of the GX1 dimer were significantly better than those of GX1. The imaging probe, 68Ga-DOTA-KEK-(GX1)2, was successfully prepared, which provides a candidate probe for PET and Cerenkov diagnosis of gastric cancer.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Atsushi Shiozaki ◽  
Daisuke Ichikawa ◽  
Kenichi Takemoto ◽  
Yoshito Nako ◽  
Shingo Nakashima ◽  
...  

The aim of the present study was to determine the efficacy of a hypotonic treatment for peritoneal dissemination from gastric cancer cells using anin vivomodel. We firstly evaluated the toxicity of a peritoneal injection of distilled water (DW) (2 mL for 3 days) in mice. Macroscopic and microscopic examinations revealed that the peritoneal injection of DW did not severely damage the abdominal organs of these mice. MKN45 gastric cancer cells preincubated with NaCl buffer or DW for 20 minutesin vitrowere then intraperitoneally injected into nude mice, and the development of dissemination nodules was analyzed. The total number, weight, and volume of the dissemination nodules were significantly decreased by the DW preincubation. We then determined whether the peritoneal injection of DW inhibited the establishment of peritoneal dissemination. After a peritoneal injection of MKN45 cells into nude mice, NaCl buffer or DW was injected into the abdominal cavity for 3 days. The total volume of dissemination nodules was significantly lower in DW-injected mice than in NaCl-injected mice. In conclusion, we demonstrated the safeness of a peritoneal injection of DW. Furthermore, the development of dissemination nodules from gastric cancer cells was prevented by a preincubation with or peritoneal injection of DW.


2021 ◽  
Vol 11 ◽  
Author(s):  
Li Wen ◽  
Lei Xia ◽  
Xiaoyi Guo ◽  
Hai-Feng Huang ◽  
Feng Wang ◽  
...  

Trastuzumab is a monoclonal antibody targeting human epidermal growth factor 2 (HER2), which has been successfully used in the treatment of patients with breast cancer and gastric cancer; however, problems concerning its cardiotoxicity, drug resistance, and unpredictable efficacy still remain. Herein, we constructed novel organic dopamine–melanin nanoparticles (dMNs) as a carrier and then surface-loaded them with trastuzumab to construct a multifunctional nanoprobe named Her-PEG-dMNPs. We used micro-PET/CT and PET/MRI multimodality imaging to evaluate the retention effect of the nanoprobe in HER2 expression in gastric cancer patient-derived xenograft (PDX) mice models after labeling of the radionuclides 64Cu or 124I and MRI contrast agent Mn2+. The nanoprobes can specifically target the HER2-expressing SKOV-3 cells in vitro (3.61 ± 0.74 vs. 1.24 ± 0.43 for 2 h, P = 0.002). In vivo, micro-PET/CT and PET/MRI showed that the 124I-labeled nanoprobe had greater contrast and retention effect in PDX models than unloaded dMNPs as carrier (1.63 ± 0.07 vs. 0.90 ± 0.04 at 24 h, P = 0.002), a similarity found in 64Cu-labeled Her-PEG-dMNPs. Because 124I has a longer half-life and matches the pharmacokinetics of the nanoparticles, we focused on the further evaluation of 124I-Her-PEG-dMNPs. Furthermore, immunohistochemistry staining confirmed the overexpression of HER2 in the animal model. This study developed and validated novel HER2-specific multimodality imaging nanoprobes for quantifying HER2 expression in mice. Through the strong retention effect of the tumor site, it can be used for the promotion of monoclonal antibody treatment effect and process monitoring.


2021 ◽  
Vol 9 ◽  
Author(s):  
Liping Lin ◽  
Xianhong Xiang ◽  
Shu Su ◽  
Shaoyu Liu ◽  
Ying Xiong ◽  
...  

Purpose: N-(2-[18F]fluoropropionyl)-L-glutamate ([18F]FPGLU) for hepatocellular carcinoma (HCC) imaging has been performed in our previous studies, but its radiosynthesis method and stability in vivo need to be improved. Hence, we evaluated the synthesis and biological properties of a simple [18F]-labeled glutamate analog, [18F]AlF-1,4,7-triazacyclononane-1,4,7-triacetic-acid-2-S-(4-isothiocyanatobenzyl)-l-glutamate ([18F]AlF-NOTA-NSC-GLU), for HCC imaging.Procedures: [18F]AlF-NOTA-NSC-GLU was synthesized via a one-step reaction sequence from NOTA-NSC-GLU. In order to investigate the imaging value of [18F]AlF-NOTA-NSC-GLU in HCC, we conducted positron emission tomography/computed tomography (PET/CT) imaging and competitive binding of [18F]AlF-NOTA-NSC-GLU in human Hep3B tumor-bearing mice. The transport mechanism of [18F]AlF-NOTA-NSC-GLU was determined by competitive inhibition and protein incorporation experiments in vitro.Results: [18F]AlF-NOTA-NSC-GLU was prepared with an overall radiochemical yield of 29.3 ± 5.6% (n = 10) without decay correction within 20 min. In vitro competitive inhibition experiments demonstrated that the Na+-dependent systems XAG-, B0+, ASC, and minor XC- were involved in the uptake of [18F]AlF-NOTA-NSC-GLU, with the Na+-dependent system XAG- possibly playing a more dominant role. Protein incorporation studies of the Hep3B human hepatoma cell line showed almost no protein incorporation. Micro-PET/CT imaging with [18F]AlF-NOTA-NSC-GLU showed good tumor-to-background contrast in Hep3B human hepatoma-bearing mouse models. After [18F]AlF-NOTA-NSC-GLU injection, the tumor-to-liver uptake ratio of [18F]AlF-NOTA-NSC-GLU was 2.06 ± 0.17 at 30 min post-injection. In vivo competitive binding experiments showed that the tumor-to-liver uptake ratio decreased with the addition of inhibitors to block the XAG system.Conclusions: We have successfully synthesized [18F]AlF-NOTA-NSC-GLU as a novel PET tracer with good radiochemical yield and high radiochemical purity. Our findings indicate that [18F]AlF-NOTA-NSC-GLU may be a potential candidate for HCC imaging. Also, a further biological evaluation is underway.


1980 ◽  
Vol 151 (2) ◽  
pp. 376-399 ◽  
Author(s):  
R M Zinkernagel ◽  
A Althage ◽  
E Waterfield ◽  
B Kindred ◽  
R M Welsh ◽  
...  

Congenitally thymusless nude mice that lacked functional T cells were reconstituted with H-2-compatible or -incompatible thymus grafts taken from either fetal, newborn, or adult mice and transplanted under the kidney capsule or subcutaneously. Transplantation with unirradiated fetal (15--17 d) or newborn thymus grafts reconstituted the nude mice as assessed by their subsequent generation of virus-specific cytotoxic T cells in vivo or alloreactive T cells in vitro. The restriction specificity of T cells from homozygous mice was exclusively for the nude host H-2, as shown by direct cytolysis or by cold target competitive inhibition assays. irrespective of whether nude mice were reconstituted with H-2-compatible, semiallogeneic, or H-2-incompatible, unirradiated newborn or fetal thymus grafts (in order of decreasing efficiency of reconstitution). The restriction specificity for the nonhost H-2 of the thymus could not be demonstrated even after primary or secondary sensitization in an infected appropriate F1 environment. These nude mice reconstituted with fetal or newborn grafts were tolerant to the H-2 of the thymus donors. Nude mice transplanted with irradiated adult thymus grafts were reconstituted functionally with syngeneic or semisyngeneic but not with allogeneic thymus grafts. In homozygous nu/nu irradiated heterozygous recipients of F1 thymus grafts, the restriction specificity for the nonhost thymic H-2 could not be elicited upon adoptive sensitization in irradiated and infected F1 heterozygote stimulator mice; in fact, these chimeras' lymphocytes were not tolerant to the nonhost H-2. The discrepancy between the restorative capacity of unirradiated vs. irradiated thymus grafts suggests that precursors of T cells in nude mice can acquire restriction specificity and immunocompetence independently of a conventional, functioning H-2-compatible thymus if exposed to an allogeneic fetal or a newborn thymus that contains functioning thymocytes of donor type but not if reconstituted with an irradiated adult allogeneic thymus.


1999 ◽  
Vol 38 (04) ◽  
pp. 115-119
Author(s):  
N. Oriuchi ◽  
S. Sugiyama ◽  
M. Kuroki ◽  
Y. Matsuoka ◽  
S. Tanada ◽  
...  

Summary Aim: The purpose of this study was to assess the potential for radioimmunodetection (RAID) of murine anti-carcinoembryonic antigen (CEA) monoclonal antibody (MAb) F33-104 labeled with technetium-99m (99m-Tc) by a reduction-mediated labeling method. Methods: The binding capacity of 99m-Tc-labeled anti-CEA MAb F33-104 with CEA by means of in vitro procedures such as immunoradiometric assay and cell binding assay and the biodistribution of 99m-Tc-labeled anti-CEA MAb F33-104 in normal nude mice and nude mice bearing human colon adenocarcinoma LS180 tumor were investigated and compared with 99m-Tc-labeled anti-CEA MAb BW431/26. Results: The in vitro binding rate of 99m-Tc-labeled anti-CEA MAb F33-104 with CEA in solution and attached to the cell membrane was significantly higher than 99m-Tclabeled anti-CEA MAb BW431/261 (31.4 ± 0.95% vs. 11.9 ± 0.55% at 100 ng/mL of soluble CEA, 83.5 ± 2.84% vs. 54.0 ± 2.54% at 107 of LS 180 cells). In vivo, accumulation of 99m-Tc-labeled anti-CEA MAb F33-104 was higher at 18 h postinjection than 99m-Tc-labeled anti-CEA MAb BW431/26 (20.1 ± 3.50% ID/g vs. 14.4 ± 3.30% ID/g). 99m-Tcactivity in the kidneys of nude mice bearing tumor was higher at 18 h postinjection than at 3 h (12.8 ± 2.10% ID/g vs. 8.01 ± 2.40% ID/g of 99m-Tc-labeled anti-CEA MAb F33-104, 10.7 ± 1.70% ID/g vs. 8.10 ± 1.75% ID/g of 99m-Tc-labeled anti-CEA MAb BW431/26). Conclusion: 99m-Tc-labeled anti-CEA MAb F33-104 is a potential novel agent for RAID of recurrent colorectal cancer.


2018 ◽  
Vol 24 (15) ◽  
pp. 1639-1651 ◽  
Author(s):  
Xian-ling Qian ◽  
Jun Li ◽  
Ran Wei ◽  
Hui Lin ◽  
Li-xia Xiong

Background: Anticancer chemotherapeutics have a lot of problems via conventional Drug Delivery Systems (DDSs), including non-specificity, burst release, severe side-effects, and damage to normal cells. Owing to its potential to circumventing these problems, nanotechnology has gained increasing attention in targeted tumor therapy. Chemotherapeutic drugs or genes encapsulated in nanoparticles could be used to target therapies to the tumor site in three ways: “passive”, “active”, and “smart” targeting. Objective: To summarize the mechanisms of various internal and external “smart” stimulating factors on the basis of findings from in vivo and in vitro studies. Method: A thorough search of PubMed was conducted in order to identify the majority of trials, studies and novel articles related to the subject. Results: Activated by internal triggering factors (pH, redox, enzyme, hypoxia, etc.) or external triggering factors (temperature, light of different wavelengths, ultrasound, magnetic fields, etc.), “smart” DDSs exhibit targeted delivery to the tumor site, and controlled release of chemotherapeutic drugs or genes. Conclusion: In this review article, we summarize and classify the internal and external triggering mechanism of “smart” nanoparticle-based DDSs in targeted tumor therapy, and the most recent research advances are illustrated for better understanding.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jia-Huang Liu ◽  
Qi-Fei Wu ◽  
Jun-Ke Fu ◽  
Xiang-Ming Che ◽  
Hai-Jun Li

Obesity could increase the risk of esophageal squamous cell carcinoma (ESCC) and affect its growth and progression, but the mechanical links are unclear. The objective of the study was to explore the impact of obesity on ESCC growth and progression utilizing in vivo trials and cell experiments in vitro. Diet-induced obese and lean nude mice were inoculated with TE-1 cells, then studied for 4 weeks. Serum glucose, insulin, leptin, and visfatin levels were assayed. Sera of nude mice were obtained and then utilized to culture TE-1. MTT, migration and invasion assays, RT-PCR, and Western blotting were used to analyze endocrine effect of obesity on cell proliferation, migration, invasion, and related genes expression of TE-1. Obese nude mice bore larger tumor xenografts than lean animals, and were hyperglycemic and hyperinsulinemic with an elevated level of leptin and visfatin in sera, and also were accompanied by a fatty liver. As for the subcutaneous tumor xenograft model, tumors were more aggressive in obese nude mice than lean animals. Tumor weight correlated positively with mouse body weight, liver weight of mice, serum glucose, HOMA-IR, leptin, and visfatin. Obesity prompted significant TE-1 cell proliferation, migration, and invasion by endocrine mechanisms and impacted target genes. The expression of AMPK and p-AMPK protein decreased significantly ( P < 0.05 ); MMP9, total YAP, p-YAP, and nonphosphorylated YAP protein increased significantly ( P < 0.05 ) in the cells cultured with conditioned media and xenograft tumor from the obese group; the mRNA expression of AMPK decreased significantly ( P < 0.05 ); YAP and MMP9 mRNA expression increased significantly ( P < 0.05 ) in the cells exposed to conditioned media from the obese group. In conclusion, the altered adipokine milieu and metabolites in the context of obesity may promote ESCC growth in vivo; affect proliferation, migration, and invasion of ESCC cells in vitro; and regulate MMP9 and AMPK-YAP signaling pathway through complex effects including the endocrine effect.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Ben Liu ◽  
Meng Zhou ◽  
Xiangchun Li ◽  
Xining Zhang ◽  
Qinghua Wang ◽  
...  

AbstractThere is a male preponderance in gastric cancer (GC), which suggests a role of androgen and androgen receptor (AR). However, the mechanism of AR signaling in GC especially in female patients remains obscure. We sought to identify the AR signaling pathway that might be related to prognosis and examine the potential clinical utility of the AR antagonist for treatment. Deep learning and gene set enrichment analysis was used to identify potential critical factors associated with gender bias in GC (n = 1390). Gene expression profile analysis was performed to screen differentially expressed genes associated with AR expression in the Tianjin discovery set (n = 90) and TCGA validation set (n = 341). Predictors of survival were identified via lasso regression analyses and validated in the expanded Tianjin cohort (n = 373). In vitro and in vivo experiments were established to determine the drug effect. The GC gender bias was attributable to sex chromosome abnormalities and AR signaling dysregulation. The candidates for AR-related gene sets were screened, and AR combined with miR-125b was associated with poor prognosis, particularly among female patients. AR was confirmed to directly regulate miR-125b expression. AR-miR-125b signaling pathway inhibited apoptosis and promoted proliferation. AR antagonist, bicalutamide, exerted anti-tumor activities and induced apoptosis both in vitro and in vivo, using GC cell lines and female patient-derived xenograft (PDX) model. We have shed light on gender differences by revealing a hormone-regulated oncogenic signaling pathway in GC. Our preclinical studies suggest that AR is a potential therapeutic target for this deadly cancer type, especially in female patients.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
An Yang ◽  
Xin Liu ◽  
Ping Liu ◽  
Yunzhang Feng ◽  
Hongbo Liu ◽  
...  

Abstract Background Long noncoding RNA (lncRNA), urothelial carcinoma-associated 1 (UCA1) is aberrantly expressed in multiple cancers and has been verified as an oncogene. However, the underlying mechanism of UCA1 in the development of gastric cancer is not fully understood. In the present study, we aimed to identify how UCA1 promotes gastric cancer development. Methods The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) data were used to analyze UCA1 and myosin VI (MYO6) expression in gastric cancer. Western blot and quantitative real-time PCR (QPCR) were performed to test the expression level of the UCA1/miR-145/MYO6 axis in gastric cancer cell lines and tissues. The roles of the UCA1/miR-145/MYO6 axis in gastric cancer in vitro and in vivo were investigated by CCK-8 assay, flow cytometry, siRNAs, immunohistochemistry, and a mouse xenograft model. The targeted relationship among UCA1, miR-145, and MYO6 was predicted using LncBase Predicted v.2 and TargetScan online software, and then verified by luciferase activity assay and RNA immunoprecipitation. Results UCA1 expression was higher but miR-145 expression was lower in gastric cancer cell lines or tissues, compared to the adjacent normal cell line or normal tissues. Function analysis verified that UCA1 promoted cell proliferation and inhibited cell apoptosis in the gastric cancer cells in vitro and in vivo. Mechanistically, UCA1 could bind directly to miR-145, and MYO6 was found to be a downstream target gene of miR-145. miR-145 mimics or MYO6 siRNAs could partly reverse the effect of UCA1 on gastric cancer cells. Conclusions UCA1 accelerated cell proliferation and inhibited cell apoptosis through sponging miR-145 to upregulate MYO6 expression in gastric cancer, indicating that the UCA1/miR-145/MYO6 axis may serve as a potential therapeutic target for gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document