scholarly journals Cepharanthine Prevents Estrogen Deficiency-Induced Bone Loss by Inhibiting Bone Resorption

2018 ◽  
Vol 9 ◽  
Author(s):  
Chen-he Zhou ◽  
Jia-hong Meng ◽  
Yu-te Yang ◽  
Bin Hu ◽  
Jian-qiao Hong ◽  
...  
2011 ◽  
Vol 115 (1) ◽  
pp. 89-93 ◽  
Author(s):  
Suguru Harada ◽  
Tsukasa Tominari ◽  
Chiho Matsumoto ◽  
Michiko Hirata ◽  
Morichika Takita ◽  
...  

2018 ◽  
Vol 9 ◽  
Author(s):  
Kun Chen ◽  
Zheng-tao Lv ◽  
Peng Cheng ◽  
Wen-tao Zhu ◽  
Shuang Liang ◽  
...  

2020 ◽  
Author(s):  
Rongxin He ◽  
Jinwei Lu ◽  
Yazhou Chen ◽  
Yong Li ◽  
Chenyi Ye ◽  
...  

Abstract BackgroundPostmenopausal osteoporosis is a chronic metabolic bone disease caused by excessive osteoclast activation, and osteoclasts are considered to be the sole participants in the degeneration and resorption of bone matrix for controlling bone integrity and continuity. The biological functions of osteoclasts depend critically on the number and activity of fused polykaryon. Hence, targeting osteoclast differentiation and activity can modulate bone resorption and alleviate osteoporosis. Alpinetin is widely used for excellent anti-inflammatory activities and little side-effect, but its role in osteoporosis remains unknown.ResultsIn this study, we investigated for the first time the ability of alpinetin to inhibit estrogen deficiency-induced bone loss. Alpinetin significantly reduced the expression levels of NFATc1 and its downstream genes, thereby inhibiting osteoclast differentiation in a concentration- and time-dependent manner. Additionally, alpinetin inhibited F-actin ring formation and bone resorption, as well as reduced the activation levels of NF-κB, ERK, and AKT signaling cascades. In mature osteoclasts, alpinetin remarkably inhibited integrin-mediated migration and lysosomal biogenesis and trafficking by modulating the PKCβ/TFEB and ATG5/LC3 axes. Importantly, alpinetin treatment in mice alleviated ovariectomy-induced bone volume loss. ConclusionOur findings strongly suggest that alpinetin plays a significant role in the regulation of NFATc1 production for the differentiation of osteoclasts and inhibits integrin-mediated cell migration and lysosomal function in mature osteoclasts, thus weaken the increased osteolytic ability due to estrogen deficiency. Alpinetin may represent a promising agent for the treatment of osteoporosis and other metabolic bone diseases.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Jung-Lye Kim ◽  
Yun-Ho Kim ◽  
Min-Kyung Kang ◽  
Ju-Hyun Gong ◽  
Seoung-Jun Han ◽  
...  

Bone integrity abnormality and imbalance between bone formation by osteoblasts and bone resorption by osteoclasts are known to result in metabolic bone diseases such as osteoporosis. Silymarin-rich milk thistle extract (MTE) and its component silibinin enhanced alkaline phosphatase activity of osteoblasts but reduced tartrate-resistant acid phosphatase (TRAP) activity of osteoclasts. The osteoprotective effects of MTE were comparable to those of estrogenic isoflavone. Low-dose combination of MTE and isoflavone had a pharmacological synergy that may be useful for osteogenic activity. This study attempted to reveal the suppressive effects of MTE on bone loss. C57BL/6 female mice were ovariectomized (OVX) as a model for postmenopausal osteopenia and orally administered 10 mg/kg MTE or silibinin for 8 weeks. The sham-operated mice served as estrogen controls. The treatment of ovariectomized mice with nontoxic MTE and silibinin improved femoral bone mineral density and serum receptor activator of nuclear factor-κB ligand/osteoprotegerin ratio, an index of osteoclastogenic stimulus. In addition, the administration of MTE or silibinin inhibited femoral bone loss induced by ovariectomy and suppressed femoral TRAP activity and cathepsin K induction responsible for osteoclastogenesis and bone resorption. Collectively, oral dosage of MTE containing silibinin in the preclinical setting is effective in preventing estrogen deficiency-induced bone loss.


Endocrinology ◽  
2010 ◽  
Vol 151 (12) ◽  
pp. 5591-5601 ◽  
Author(s):  
Laleh Ardeshirpour ◽  
Susan Brian ◽  
Pamela Dann ◽  
Joshua VanHouten ◽  
John Wysolmerski

During lactation, calcium is mobilized from the maternal skeleton to supply the breast for milk production. This results in rapid but fully reversible bone loss. Prior studies have suggested that PTHrP, secreted from the breast, and estrogen deficiency, due to suckling-induced central hypogonadism, combine to trigger bone resorption. To determine whether this combination was sufficient to explain bone loss during lactation, we raised PTHrP levels and decreased levels of estrogens in nulliparous mice. PTHrP was infused via osmotic minipumps and estrogens were decreased either by using leuprolide, a long-acting GnRH agonist, or by surgical ovariectomy (OVX). Bone mineral density declined by 23.2 ± 1.3% in the spine and 16.8 ± 1.9% in the femur over 10 d of lactation. This was accompanied by changes in trabecular architecture and an increase in both osteoblast and osteoclast numbers. OVX and PTHrP infusion both induced a modest decline in bone mineral density over 10 d, but leuprolide treatment did not. The combination of OVX and PTHrP was more effective than either treatment alone, but there was no interaction between PTHrP and leuprolide. None of the treatments reproduced the same degree of bone loss caused by lactation. However, both forms of estrogen deficiency led to an increase in osteoclasts, whereas infusion of PTHrP increased both osteoblasts and osteoclasts. Therefore, although the combination of PTHrP and estrogen deficiency contributes to bone loss, it is insufficient to reproduce the full response of the skeleton to lactation, suggesting that other factors also regulate bone metabolism during this period.


iScience ◽  
2021 ◽  
pp. 103261
Author(s):  
JunMa ◽  
Jiajia Lu ◽  
Zhibin Zhou ◽  
Nan Lu ◽  
Jia He ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 199
Author(s):  
Urara Tanaka ◽  
Shunichi Kajioka ◽  
Livia S. Finoti ◽  
Daniela B. Palioto ◽  
Denis F. Kinane ◽  
...  

DNA methylation controls several inflammatory genes affecting bone homeostasis. Hitherto, inhibition of DNA methylation in vivo in the context of periodontitis and osteoclastogenesis has not been attempted. Ligature-induced periodontitis in C57BL/6J mice was induced by placing ligature for five days with Decitabine (5-aza-2′-deoxycytidine) (1 mg/kg/day) or vehicle treatment. We evaluated bone resorption, osteoclast differentiation by tartrate-resistant acid phosphatase (TRAP) and mRNA expression of anti-inflammatory molecules using cluster differentiation 14 positive (CD14+) monocytes from human peripheral blood. Our data showed that decitabine inhibited bone loss and osteoclast differentiation experimental periodontitis, and suppressed osteoclast CD14+ human monocytes; and conversely, that it increased bone mineralization in osteoblastic cell line MC3T3-E1 in a concentration-dependent manner. In addition to increasing IL10 (interleukin-10), TGFB (transforming growth factor beta-1) in CD14+ monocytes, decitabine upregulated KLF2 (Krüppel-like factor-2) expression. Overexpression of KLF2 protein enhanced the transcription of IL10 and TGFB. On the contrary, site-directed mutagenesis of KLF2 binding site in IL10 and TFGB abrogated luciferase activity in HEK293T cells. Decitabine reduces bone loss in a mouse model of periodontitis by inhibiting osteoclastogenesis through the upregulation of anti-inflammatory cytokines via KLF2 dependent mechanisms. DNA methyltransferase inhibitors merit further investigation as a possible novel therapy for periodontitis.


iScience ◽  
2021 ◽  
pp. 102224
Author(s):  
Juliane Lehmann ◽  
Sylvia Thiele ◽  
Ulrike Baschant ◽  
Tilman D. Rachner ◽  
Christof Niehrs ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 619
Author(s):  
Hyun-Jung Park ◽  
Malihatosadat Gholam-Zadeh ◽  
Sun-Young Yoon ◽  
Jae-Hee Suh ◽  
Hye-Seon Choi

Loss of ovarian function is closely related to estrogen (E2) deficiency, which is responsible for increased osteoclast (OC) differentiation and activity. We aimed to investigate the action mechanism of E2 to decrease bone resorption in OCs to protect from ovariectomy (OVX)-induced bone loss in mice. In vivo, tartrate-resistant acid phosphatase (TRAP) staining in femur and serum carboxy-terminal collagen crosslinks-1 (CTX-1) were analyzed upon E2 injection after OVX in mice. In vitro, OCs were analyzed by TRAP staining, actin ring formation, carboxymethylation, determination of reactive oxygen species (ROS) level, and immunoprecipitation coupled with Western blot. In vivo and in vitro, E2 decreased OC size more dramatically than OC number and Methyl-piperidino-pyrazole hydrate dihydrochloride (MPPD), an estrogen receptor alpha (ERα) antagonist, augmented the OC size. ERα was found in plasma membranes and E2/ERα signaling affected receptor activator of nuclear factor κB ligand (RANKL)-induced actin ring formation by rapidly decreasing a proto-oncogene tyrosine-protein kinase, cellular sarcoma (c-Src) (Y416) phosphorylation in OCs. E2 exposure decreased physical interactions between NADPH oxidase 1 (NOX1) and the oxidized form of c-Src homology 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2), leading to higher levels of reduced SHP2. ERα formed a complex with the reduced form of SHP2 and c-Src to decrease c-Src activation upon E2 exposure, which blocked a signal for actin ring formation by decreased Vav guanine nucleotide exchange factor 3 (Vav3) (p–Y) and Ras-related C3 botulinum toxin substrate 1 (Rac1) (GTP) activation in OCs. E2/ERα signals consistently inhibited bone resorption in vitro. In conclusion, our study suggests that E2-binding to ERα forms a complex with SHP2/c-Src to attenuate c-Src activation that was induced upon RANKL stimulation in a non-genomic manner, resulting in an impaired actin ring formation and reducing bone resorption.


Sign in / Sign up

Export Citation Format

Share Document