scholarly journals Nobiletin, a Polymethoxy Flavonoid, Suppresses Bone Resorption by Inhibiting NFκB-Dependent Prostaglandin E Synthesis in Osteoblasts and Prevents Bone Loss Due to Estrogen Deficiency

2011 ◽  
Vol 115 (1) ◽  
pp. 89-93 ◽  
Author(s):  
Suguru Harada ◽  
Tsukasa Tominari ◽  
Chiho Matsumoto ◽  
Michiko Hirata ◽  
Morichika Takita ◽  
...  
2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Megumi Kobayashi ◽  
Kenta Watanabe ◽  
Satoshi Yokoyama ◽  
Chiho Matsumoto ◽  
Michiko Hirata ◽  
...  

Capsaicin, a transient receptor potential vanilloid type 1 (TRPV1) ligand, regulates nerve-related pain-sensitive signals, inflammation, and cancer growth. Capsaicin suppresses interleukin-1-induced osteoclast differentiation, but its roles in bone tissues and bone diseases are not known. This study examined the effects of capsaicin on inflammatory bone resorption and prostaglandin E (PGE) production induced by lipopolysaccharide (LPS) in vitro and on bone mass in LPS-treated mice in vivo. Capsaicin suppressed osteoclast formation, bone resorption, and PGE production induced by LPS in vitro. Capsaicin suppressed the expression of cyclooxygenase-2 (COX-2) and membrane-bound PGE synthase-1 (mPGES-1) mRNAs and PGE production induced by LPS in osteoblasts. Capsaicin may suppress PGE production by inhibiting the expression of COX-2 and mPGES-1 in osteoblasts and LPS-induced bone resorption by TRPV1 signals because osteoblasts express TRPV1. LPS treatment markedly induced bone loss in the femur in mice, and capsaicin significantly restored the inflammatory bone loss induced by LPS in mice. TRPV1 ligands like capsaicin may therefore be potentially useful as clinical drugs targeting bone diseases associated with inflammatory bone resorption.


2018 ◽  
Vol 9 ◽  
Author(s):  
Kun Chen ◽  
Zheng-tao Lv ◽  
Peng Cheng ◽  
Wen-tao Zhu ◽  
Shuang Liang ◽  
...  

2018 ◽  
Vol 9 ◽  
Author(s):  
Chen-he Zhou ◽  
Jia-hong Meng ◽  
Yu-te Yang ◽  
Bin Hu ◽  
Jian-qiao Hong ◽  
...  

2020 ◽  
Author(s):  
Rongxin He ◽  
Jinwei Lu ◽  
Yazhou Chen ◽  
Yong Li ◽  
Chenyi Ye ◽  
...  

Abstract BackgroundPostmenopausal osteoporosis is a chronic metabolic bone disease caused by excessive osteoclast activation, and osteoclasts are considered to be the sole participants in the degeneration and resorption of bone matrix for controlling bone integrity and continuity. The biological functions of osteoclasts depend critically on the number and activity of fused polykaryon. Hence, targeting osteoclast differentiation and activity can modulate bone resorption and alleviate osteoporosis. Alpinetin is widely used for excellent anti-inflammatory activities and little side-effect, but its role in osteoporosis remains unknown.ResultsIn this study, we investigated for the first time the ability of alpinetin to inhibit estrogen deficiency-induced bone loss. Alpinetin significantly reduced the expression levels of NFATc1 and its downstream genes, thereby inhibiting osteoclast differentiation in a concentration- and time-dependent manner. Additionally, alpinetin inhibited F-actin ring formation and bone resorption, as well as reduced the activation levels of NF-κB, ERK, and AKT signaling cascades. In mature osteoclasts, alpinetin remarkably inhibited integrin-mediated migration and lysosomal biogenesis and trafficking by modulating the PKCβ/TFEB and ATG5/LC3 axes. Importantly, alpinetin treatment in mice alleviated ovariectomy-induced bone volume loss. ConclusionOur findings strongly suggest that alpinetin plays a significant role in the regulation of NFATc1 production for the differentiation of osteoclasts and inhibits integrin-mediated cell migration and lysosomal function in mature osteoclasts, thus weaken the increased osteolytic ability due to estrogen deficiency. Alpinetin may represent a promising agent for the treatment of osteoporosis and other metabolic bone diseases.


1999 ◽  
Vol 03 (03) ◽  
pp. 209-216
Author(s):  
Jenny Zhao ◽  
Yebin Jiang ◽  
Harry K. Genant

Alendronate has been developed for the treatment of diseases characterized by increased bone resorption, such as osteoporosis. It increases metaphyseal bone density, bone volume, femoral bending strength and vertebral compressive strength, in a dose-dependent manner, in growing, intact rats. In ovariectomized (OVX) rats, alendronate increases femoral bone mass and tibial trabecular bone volume in a dose-dependent manner, and increases femoral midshaft bending strength. In rats immobilized by unilateral sciatic neurectomy, it inhibits bone loss and is dose-dependent. In rats, alendronate prevents high-turnover osteopenia induced by hyperthyroidism or by administration of immunosuppressant agent cyclosporin-A. Also in rats, treatment with prostaglandin E 2 and alendronate does not inhibit prostaglandin E 2-induced stimulation of bone formation on endocortical and periosteal surfaces. It does, however, prevent prostaglandin E 2-induced cortical bone porosity as a result of increased bone resorption, leading to an increase in cortical thickness and an increase in three-point bending strength of the femoral midshaft. At up to five times the dose used for treatment of osteoporosis in clinical trials, alendronate causes no abnormalities in bone remodeling, bone structure, or structural mechanical properties of the femur or vertebrae in intact beagles. Treatment with alendronate before or during fracture healing, or both, has no adverse effects on the union, strength, bone formation or mineralization of bone in mature beagle dogs. In intact minipigs, sodium fluoride increases and alendronate decreases bone turnover, while sodium fluoride, but not alendronate, decreases L4 strength and femoral stiffness. Small-angle X-ray scattering and backscattered electron imaging show that the trabecular bone matrix is more uniformly mineralized after alendronate treatment. In OVX baboons, which show bone changes similar to those seen in postmenopausal women, alendronate prevents an increase in bone turnover, and increases both bone volume and strength in vertebrae, in a dose-dependent manner. Alendronate also reduces the bone loss of alveolar support associated with periodontitis in monkeys. Thus, alendronate inhibits bone resorption and bone turnover, increases bone quantity accompanied by improved bone quality in some of the intact animals and in the animal models.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Jung-Lye Kim ◽  
Yun-Ho Kim ◽  
Min-Kyung Kang ◽  
Ju-Hyun Gong ◽  
Seoung-Jun Han ◽  
...  

Bone integrity abnormality and imbalance between bone formation by osteoblasts and bone resorption by osteoclasts are known to result in metabolic bone diseases such as osteoporosis. Silymarin-rich milk thistle extract (MTE) and its component silibinin enhanced alkaline phosphatase activity of osteoblasts but reduced tartrate-resistant acid phosphatase (TRAP) activity of osteoclasts. The osteoprotective effects of MTE were comparable to those of estrogenic isoflavone. Low-dose combination of MTE and isoflavone had a pharmacological synergy that may be useful for osteogenic activity. This study attempted to reveal the suppressive effects of MTE on bone loss. C57BL/6 female mice were ovariectomized (OVX) as a model for postmenopausal osteopenia and orally administered 10 mg/kg MTE or silibinin for 8 weeks. The sham-operated mice served as estrogen controls. The treatment of ovariectomized mice with nontoxic MTE and silibinin improved femoral bone mineral density and serum receptor activator of nuclear factor-κB ligand/osteoprotegerin ratio, an index of osteoclastogenic stimulus. In addition, the administration of MTE or silibinin inhibited femoral bone loss induced by ovariectomy and suppressed femoral TRAP activity and cathepsin K induction responsible for osteoclastogenesis and bone resorption. Collectively, oral dosage of MTE containing silibinin in the preclinical setting is effective in preventing estrogen deficiency-induced bone loss.


Endocrinology ◽  
2010 ◽  
Vol 151 (12) ◽  
pp. 5591-5601 ◽  
Author(s):  
Laleh Ardeshirpour ◽  
Susan Brian ◽  
Pamela Dann ◽  
Joshua VanHouten ◽  
John Wysolmerski

During lactation, calcium is mobilized from the maternal skeleton to supply the breast for milk production. This results in rapid but fully reversible bone loss. Prior studies have suggested that PTHrP, secreted from the breast, and estrogen deficiency, due to suckling-induced central hypogonadism, combine to trigger bone resorption. To determine whether this combination was sufficient to explain bone loss during lactation, we raised PTHrP levels and decreased levels of estrogens in nulliparous mice. PTHrP was infused via osmotic minipumps and estrogens were decreased either by using leuprolide, a long-acting GnRH agonist, or by surgical ovariectomy (OVX). Bone mineral density declined by 23.2 ± 1.3% in the spine and 16.8 ± 1.9% in the femur over 10 d of lactation. This was accompanied by changes in trabecular architecture and an increase in both osteoblast and osteoclast numbers. OVX and PTHrP infusion both induced a modest decline in bone mineral density over 10 d, but leuprolide treatment did not. The combination of OVX and PTHrP was more effective than either treatment alone, but there was no interaction between PTHrP and leuprolide. None of the treatments reproduced the same degree of bone loss caused by lactation. However, both forms of estrogen deficiency led to an increase in osteoclasts, whereas infusion of PTHrP increased both osteoblasts and osteoclasts. Therefore, although the combination of PTHrP and estrogen deficiency contributes to bone loss, it is insufficient to reproduce the full response of the skeleton to lactation, suggesting that other factors also regulate bone metabolism during this period.


iScience ◽  
2021 ◽  
pp. 103261
Author(s):  
JunMa ◽  
Jiajia Lu ◽  
Zhibin Zhou ◽  
Nan Lu ◽  
Jia He ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 199
Author(s):  
Urara Tanaka ◽  
Shunichi Kajioka ◽  
Livia S. Finoti ◽  
Daniela B. Palioto ◽  
Denis F. Kinane ◽  
...  

DNA methylation controls several inflammatory genes affecting bone homeostasis. Hitherto, inhibition of DNA methylation in vivo in the context of periodontitis and osteoclastogenesis has not been attempted. Ligature-induced periodontitis in C57BL/6J mice was induced by placing ligature for five days with Decitabine (5-aza-2′-deoxycytidine) (1 mg/kg/day) or vehicle treatment. We evaluated bone resorption, osteoclast differentiation by tartrate-resistant acid phosphatase (TRAP) and mRNA expression of anti-inflammatory molecules using cluster differentiation 14 positive (CD14+) monocytes from human peripheral blood. Our data showed that decitabine inhibited bone loss and osteoclast differentiation experimental periodontitis, and suppressed osteoclast CD14+ human monocytes; and conversely, that it increased bone mineralization in osteoblastic cell line MC3T3-E1 in a concentration-dependent manner. In addition to increasing IL10 (interleukin-10), TGFB (transforming growth factor beta-1) in CD14+ monocytes, decitabine upregulated KLF2 (Krüppel-like factor-2) expression. Overexpression of KLF2 protein enhanced the transcription of IL10 and TGFB. On the contrary, site-directed mutagenesis of KLF2 binding site in IL10 and TFGB abrogated luciferase activity in HEK293T cells. Decitabine reduces bone loss in a mouse model of periodontitis by inhibiting osteoclastogenesis through the upregulation of anti-inflammatory cytokines via KLF2 dependent mechanisms. DNA methyltransferase inhibitors merit further investigation as a possible novel therapy for periodontitis.


Sign in / Sign up

Export Citation Format

Share Document