scholarly journals Population Pharmacokinetic/Pharmacodynamic Model-Guided Dosing Optimization of a Novel Sedative HR7056 in Chinese Healthy Subjects

2018 ◽  
Vol 9 ◽  
Author(s):  
Ying Zhou ◽  
Pei Hu ◽  
Yuguang Huang ◽  
Nuoer Sang ◽  
Kaicheng Song ◽  
...  
2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S529-S529
Author(s):  
Scott A Van Wart ◽  
Christopher Stevens ◽  
Zoltan Magyarics ◽  
Steven A Luperchio ◽  
Paul G Ambrose

Author(s):  
M Neyens ◽  
H M Crauwels ◽  
J J Perez-Ruixo ◽  
S Rossenu

Abstract Objectives To characterize the population pharmacokinetics of the rilpivirine long-acting (LA) formulation after intramuscular administration. Methods Rich and sparse rilpivirine plasma concentration data were obtained from seven clinical studies. In total, 18 261 rilpivirine samples were collected from 986 subjects (131 healthy subjects from Phase I studies and 855 people living with HIV from Phase IIb/III studies). Doses ranged from 300 to 1200 mg, as single-dose or multiple-dose regimens (every 4 or 8 weeks). In Phase III studies, an initiation injection of 900 mg followed by continuation injections of 600 mg every 4 weeks was used. Non-linear mixed-effects modelling was performed using NONMEM® software. Results A one-compartment model with linear elimination and two parallel absorption pathways (fast and slow) with sequential zero-first-order processes adequately captured rilpivirine flip-flop pharmacokinetics after intramuscular administration of the LA formulation. The estimated apparent elimination half-life of rilpivirine LA was 200 days. None of the evaluated covariates (age, body weight, BMI, sex, race, health status and needle length) had a clinically relevant impact on rilpivirine pharmacokinetics. Conclusions The population pharmacokinetic model suitably describes the time course and associated variability of rilpivirine plasma concentrations after rilpivirine LA intramuscular administration. The monthly regimen consists of an oral lead-in period (rilpivirine 25 mg tablets once daily for 4 weeks), followed by an initiation injection of 900 mg rilpivirine LA, then 600 mg rilpivirine LA continuation injections monthly. The absence of a clinically relevant effect of covariates on rilpivirine pharmacokinetics suggests that rilpivirine LA dose adjustments for specific subgroups are not warranted.


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S433-S434
Author(s):  
Scott A Van Wart ◽  
Christopher Stevens ◽  
Zoltan Magyarics ◽  
Steven A Luperchio ◽  
Christopher M Rubino ◽  
...  

2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Laura L. Kovanda ◽  
Sean M. Sullivan ◽  
Larry R. Smith ◽  
Amit V. Desai ◽  
Pete L. Bonate ◽  
...  

ABSTRACT VL-2397, a novel, systemic antifungal agent, has potent in vitro and in vivo fungicidal activity against Aspergillus species. Plasma concentrations from a phase 1 study were used to construct a population pharmacokinetic (PPK) model for VL-2397. Healthy subjects aged 18 to 55 years received single doses of VL-2397, ranging from 3 to 1,200 mg, multiple daily doses of 300, 600, or 1,200 mg for 7 days, or 300 mg three times/day for 7 days followed by 600 mg daily for 21 days. Plasma samples were collected throughout the dosing intervals. Sixty-six subjects provided 1,908 concentrations. Drug concentrations over time were increased less than dose proportionally for doses above 30 mg. Dose-normalized concentrations plotted over time did not overlap. A 3-compartment nonlinear saturable binding model fit the data well. Clearance increased with dose, and mean values ranged from 0.4 liters/h at 3 mg to 8.5 liters/h at 1,200 mg. Mean volume in the central compartment ranged from 4.8 to 6.9 liters across doses. In the first 24 h, once-daily dosing results in a rapid decrease in concentrations by hour 16 to approximately 1 mg/liter, regardless of dose, with slow clearance over time. Administration of 300 mg every 8 h achieved concentrations above 1 mg/liter over an entire 24-h period. There was a significant relationship between body surface area and clearance. The data suggest that VL-2397 has nonlinear saturable binding kinetics. Protein binding is the likely primary source of the nonlinearity. The PPK model can now be used to optimize dosing by bridging the kinetics to efficacious pharmacodynamic targets.


Sign in / Sign up

Export Citation Format

Share Document