scholarly journals Clinical Review: Navitoclax as a Pro-Apoptotic and Anti-Fibrotic Agent

2020 ◽  
Vol 11 ◽  
Author(s):  
Nur Najmi Mohamad Anuar ◽  
Nur Syahidah Nor Hisam ◽  
Sze Ling Liew ◽  
Azizah Ugusman

B-cell lymphoma 2 (BCL-2) family proteins primarily work as a programmed cell death regulator, whereby multiple interactions between them determine cell survival. This explains the two major classes of BCL-2 proteins which are anti-apoptotic and pro-apoptotic proteins. The anti-apoptotic proteins are attractive targets for BCL-2 family inhibitors, which result in the augmentation of the intrinsic apoptotic pathway. BCL-2 family inhibitors have been studied extensively for novel targeted therapies in various cancer types, fibrotic diseases, aging-related as well as autoimmune diseases. Navitoclax is one of them and it has been discovered to have a high affinity toward BCL-2 anti-apoptotic proteins, including BCL-2, BCL-W and B-cell lymphoma-extra-large. Navitoclax has been demonstrated as a single agent or in combination with other drugs to successfully ameliorate tumor progression and fibrosis development. To date, navitoclax has entered phase I and phase II clinical studies. Navitoclax alone potently treats small cell lung cancer and acute lymphocytic leukemia, whilst in combination therapy for solid tumors, it enhances the therapeutic effect of other chemotherapeutic agents. A low platelet count has always associated with single navitoclax treatments, though this effect is tolerable. Moreover, the efficacy of navitoclax is determined by the expression of several BCL-2 family members. Here, we elucidate the complex mechanisms of navitoclax as a pro-apoptotic agent, and review the early and current clinical studies of navitoclax alone as well as with other drugs. Additionally, some suggestions on the development of navitoclax clinical studies are presented in the future prospects section.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3969-3969
Author(s):  
David A. Fruman ◽  
Jong-Hoon Scott Lee ◽  
Thanh-Trang T Vo ◽  
Shruti Bhatt ◽  
Jonathan H. Schatz ◽  
...  

Abstract BCL-2 is a key pro-survival protein that is highly expressed in many leukemias and lymphomas. ABT-199 (venetoclax) is a small molecule inhibitor of BCL-2 that has demonstrated impressive responses in chronic lymphocytic leukemia (CLL) leading to FDA approval for second line treatment of patients with 17p deletion. However, other hematologic malignancies are less responsive to ABT-199 as a single agent, suggesting that combinations of targeted therapies may be required to elicit more promising responses. We have investigated the potential of combining ABT-199 with HMG-CoA reductase (HMGCR) inhibitors (statins), which have known anti-cancer potential in hematologic malignancies. Using multiple chemically distinct statin compounds, we observed profound synergistic induction of apoptosis when combined with ABT-199 in both human diffuse large B cell lymphoma (DLBCL) as well as acute myeloid leukemia (AML) cell lines. This synergy was also seen in primary murine B lymphoma cells over-expressing MYC and BCL-2. Importantly, addition of exogenous mevalonate completely rescued cells from the combination, confirming on-target efficacy of HMGCR inhibition. Using BH3 profiling, we found that simvastatin significantly primed lymphoma cells for undergoing apoptosis (termed mitochondrial priming). Notably, the degree of priming correlated with its ability to synergize with ABT-199, suggesting that BH3 profiling may be used to predict patient responses. The combination did not synergize to kill normal human peripheral blood mononuclear cells from healthy donors, suggesting that statins may selectively prime cancer cells for apoptosis. Mechanistic studies support the hypothesis that statins synergize with ABT-199 by suppressing protein prenylation, particularly protein geranylgeranylation. In support, the addition of exogenous geranylgeranyl pyrophosphate (GGPP) completely rescued cells from the effects of simvastatin. Furthermore, selective inhibition of protein geranylgeranyl transferase (GGT) increased priming and was sufficient to recapitulate the effects of simvastatin in combination with ABT-199. Statins and GGT inhibitors increased the mitochondrial abundance of a subset of BH3-only pro-apoptotic proteins. Lastly, we have identified Rap1A de-prenylation as a marker of pharmacodynamic response to statins in vivo. Thus, this project highlights a novel combination for use in aggressive lymphomas, establishes its efficacy and tolerability using preclinical models, and provides proof-of-concept to warrant investigation of its clinical potential. Disclosures Letai: AbbVie: Consultancy, Research Funding; Astra-Zeneca: Consultancy, Research Funding; Tetralogic: Consultancy, Research Funding.


2021 ◽  
Vol 22 (16) ◽  
pp. 8572
Author(s):  
Nikolaos Ioannou ◽  
Khushi Jain ◽  
Alan G. Ramsay

Accumulating evidence suggests that the tumor microenvironment (TME) is involved in disease progression and drug resistance in B cell malignancies, by supporting tumor growth and facilitating the ability of malignant cells to avoid immune recognition. Immunomodulatory drugs (IMiDs) such as lenalidomide have some direct anti-tumor activity, but critically also target various cellular compartments of the TME including T cells, NK cells, and stromal cells, which interfere with pro-tumor signaling while activating anti-tumor immune responses. Lenalidomide has delivered favorable clinical outcomes as a single-agent, and in combination therapy leads to durable responses in chronic lymphocytic leukemia (CLL) and several non-Hodgkin lymphomas (NHLs) including follicular lymphoma (FL), diffuse large B cell lymphoma (DLBCL), and mantle cell lymphoma (MCL). Recently, avadomide, a next generation cereblon E3 ligase modulator (CELMoD), has shown potent anti-tumor and TME immunomodulatory effects, as well as promising clinical efficacy in DLBCL. This review describes how the pleiotropic effects of IMiDs and CELMoDs could make them excellent candidates for combination therapy in the immuno-oncology era—a concept supported by preclinical data, as well as the recent approval of lenalidomide in combination with rituximab for the treatment of relapsed/refractory (R/R) FL.


2017 ◽  
Vol 5 (1) ◽  
pp. 232470961769130
Author(s):  
Lauren M. Jacobs ◽  
Peter H. Wiernik ◽  
Janice P. Dutcher ◽  
Pablo Muxi

Rituximab (R), a chimeric monoclonal antibody targeting CD20 antigen on B-cells, has become a standard of care in the treatment of B-cell malignancies, most often in conjunction with cytotoxic chemotherapy. Activity has been demonstrated in many subtypes of B-cell lymphoma, including diffuse large cell lymphoma, follicular lymphoma (FL), mantle cell lymphoma (MCL), chronic lymphocytic leukemia (CLL), lymphocyte-predominant Hodgkin lymphoma, and Waldenström macroglobulinemia (WM). Additionally, dose escalation of R as a single agent has demonstrated improved activity in previously treated/poor prognosis CLL. We present 4 cases of B-cell malignancy (2 CLL variants/MCL, 1 FL, 1 WM) who received dose-escalated R as a single agent and achieved complete response (3 patients) and stable disease/partial response (1 patient) of 6.5+ to 15+ years duration. They have been off treatment for 6.5+ to 15+ years. Toxicity was minimal, with initial infusion reactions similar to those observed with standard dose infusions. There were no serious treatment-related adverse events or infections. Dose escalated R as a single agent may possibly be curative for some patients with B-cell malignancies, unlike the standard empiric dose of 375 mg/m2, and deserves further study.


PLoS ONE ◽  
2007 ◽  
Vol 2 (6) ◽  
pp. e559 ◽  
Author(s):  
Christina L. Kress ◽  
Marina Konopleva ◽  
Vanesa Martínez-García ◽  
Maryla Krajewska ◽  
Sophie Lefebvre ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1187-1187
Author(s):  
Wu Yin ◽  
Zhe Nie ◽  
Karen Dingley ◽  
Michael Trzoss ◽  
Goran Krilov ◽  
...  

Abstract Introduction: MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) is a key mediator of the NF-κB signaling pathway, the main driver of a subset of B-cell lymphomas and functions by forming a complex with CARMA1 and BCL10 to mediate antigen receptor-induced lymphocyte activation. MALT1 is considered a potential therapeutic target for several subtypes of non-Hodgkin B-cell lymphomas and chronic lymphocytic leukemia (CLL). Previously, we described the discovery of novel and potent MALT1 inhibitors with anti-proliferative effects in non-Hodgkin B-cell lymphoma cells. Here, we highlight the strong anti-tumor activity of our MALT1 inhibitors across multiple tumor models and the combination potential with agents including standard-of-care. Results: Novel small molecule MALT1 inhibitors were identified using Schrodinger's proprietary physics-based free energy perturbation (FEP+) modeling technology. These molecules demonstrate strong MALT1 protein binding affinity, potent inhibition of MALT1 enzymatic activity and anti-proliferative activity in the activated B-cell (ABC) subtype of diffuse large B cell lymphoma (DLBCL) cell lines such as OCI-LY3 and OCI-LY10. In combination with approved agents, these inhibitors demonstrate strong combination potential with Bruton's tyrosine kinase (BTK) inhibitors such as ibrutinib in ABC-DLBCL cell lines. In ABC-DLBCL CDX models, our representative MALT1 inhibitor induces tumor regression as a single agent and complete tumor regression in combination with ibrutinib. Our representative MALT1 inhibitor, when tested in LY2298 PDX models, demonstrates similar results. In addition, our representative MALT1 inhibitor was explored in a CDX model derived from a Mantle cell lymphoma REC-1 cell line, and demonstrates strong anti-tumor activity of ~78% tumor growth inhibition (TGI) as a single agent. Conclusions: Schrodinger's novel, potent MALT1 protease small molecule inhibitors are efficacious in in vitro B-cell lymphoma cell proliferation assays and in in vivo B-cell lymphoma xenograft models. These data suggest that targeting MALT1 may expand therapeutic options for patients with selected B-cell lymphomas, such as ABC-DLBCL, with the possibility of expanding into other B-cell lymphomas such as MCL. Furthermore, these small molecule MALT1 inhibitors demonstrate potential in combination with BTKi to overcome drug-induced resistance in patients with relapsed/refractory B-cell lymphomas. Taken together, the data presented here strongly underscore the therapeutic potential of our MALT1 inhibitor and support further evaluation in clinical trials. Disclosures Weiss: Schrodinger: Current Employment; ARTham Therapeutics: Membership on an entity's Board of Directors or advisory committees.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2167
Author(s):  
Etienne Leveille ◽  
Nathalie Johnson

Diffuse large B cell lymphoma (DLBCL) is curable with chemoimmunotherapy in ~65% of patients. One of the hallmarks of the pathogenesis and resistance to therapy in DLBCL is inhibition of apoptosis, which allows malignant cells to survive and acquire further alterations. Inhibition of apoptosis can be the result of genetic events inhibiting the intrinsic or extrinsic apoptotic pathways, as well as their modulators, such as the inhibitor of apoptosis proteins, P53, and components of the NF-kB pathway. Mechanisms of dysregulation include upregulation of anti-apoptotic proteins and downregulation of pro-apoptotic proteins via point mutations, amplifications, deletions, translocations, and influences of other proteins. Understanding the factors contributing to resistance to apoptosis in DLBCL is crucial in order to be able to develop targeted therapies that could improve outcomes by restoring apoptosis in malignant cells. This review describes the genetic events inhibiting apoptosis in DLBCL, provides a perspective of their interactions in lymphomagenesis, and discusses their implication for the future of DLBCL therapy.


2016 ◽  
Vol 7 (6) ◽  
pp. 321-329 ◽  
Author(s):  
Valentín Ortíz-Maldonado ◽  
Pablo Mozas ◽  
Julio Delgado

B-cell lymphoma 2 (BCL2)-type proteins are key regulators of the intrinsic or mitochondrial pathway for apoptosis. Since escape from apoptosis is one the main ‘hallmarks of cancer’, BCL2 inhibitors have emerged as promising therapeutic agents for diverse lymphoid malignancies, particularly chronic lymphocytic leukemia (CLL). Multiple clinical trials have shown efficacy of these agents in patients with relapsed/refractory disease with a favorable toxicity profile. Moreover, some clinical trials indicate that combination with monoclonal antibodies and other novel agents may enhance their effect.


Blood ◽  
2019 ◽  
Vol 133 (1) ◽  
pp. 70-80 ◽  
Author(s):  
Kamil Bojarczuk ◽  
Kirsty Wienand ◽  
Jeremy A. Ryan ◽  
Linfeng Chen ◽  
Mariana Villalobos-Ortiz ◽  
...  

Abstract Inhibition of the B-cell receptor (BCR) signaling pathway is a promising treatment strategy in multiple B-cell malignancies. However, the role of BCR blockade in diffuse large B-cell lymphoma (DLBCL) remains undefined. We recently characterized primary DLBCL subsets with distinct genetic bases for perturbed BCR/phosphoinositide 3-kinase (PI3K) signaling and dysregulated B-cell lymphoma 2 (BCL-2) expression. Herein, we explore the activity of PI3K inhibitors and BCL-2 blockade in a panel of functionally and genetically characterized DLBCL cell line models. A PI3K inhibitor with predominant α/δ activity, copanlisib, exhibited the highest cytotoxicity in all BCR-dependent DLBCLs. The proapoptotic effect of copanlisib was associated with DLBCL subtype-specific dysregulated expression of BCL-2 family members including harakiri (HRK) and its antiapoptotic partner BCL extra large (BCL-xL), BCL2 related protein A1, myeloid cell leukemia 1 (MCL-1), and BCL2 interacting mediator of cell death. Using functional BH3 profiling, we found that the cytotoxic activity of copanlisib was primarily mediated through BCL-xL and MCL-1–dependent mechanisms that might complement BCL-2 blockade. For these reasons, we evaluated single-agent activity of venetoclax in the DLBCLs and identified a subset with limited sensitivity to BCL-2 blockade despite having genetic bases of BCL-2 dysregulation. As these were largely BCR-dependent DLBCLs, we hypothesized that combined inhibition of PI3Kα/δ and BCL-2 would perturb BCR-dependent and BCL-2–mediated survival pathways. Indeed, we observed synergistic activity of copanlisib/venetoclax in BCR-dependent DLBCLs with genetic bases for BCL-2 dysregulation in vitro and confirmed these findings in a xenograft model. These results provide preclinical evidence for the rational combination of PI3Kα/δ and BCL-2 blockade in genetically defined DLBCLs.


Sign in / Sign up

Export Citation Format

Share Document