scholarly journals Electrophysiological Abnormalities in VLCAD Deficient hiPSC-Cardiomyocytes Do not Improve with Carnitine Supplementation

2021 ◽  
Vol 11 ◽  
Author(s):  
Arie O. Verkerk ◽  
Suzan J. G. Knottnerus ◽  
Vincent Portero ◽  
Jeannette C. Bleeker ◽  
Sacha Ferdinandusse ◽  
...  

Patients with a deficiency in very long-chain acyl-CoA dehydrogenase (VLCAD), an enzyme that is involved in the mitochondrial beta-oxidation of long-chain fatty acids, are at risk for developing cardiac arrhythmias. In human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs), VLCAD deficiency (VLCADD) results in a series of abnormalities, including: 1) accumulation of long-chain acylcarnitines, 2) action potential shortening, 3) higher systolic and diastolic intracellular Ca2+ concentrations, and 4) development of delayed afterdepolarizations. In the fatty acid oxidation process, carnitine is required for bidirectional transport of acyl groups across the mitochondrial membrane. Supplementation has been suggested as potential therapeutic approach in VLCADD, but its benefits are debated. Here, we studied the effects of carnitine supplementation on the long-chain acylcarnitine levels and performed electrophysiological analyses in VLCADD patient-derived hiPSC-CMs with a ACADVL gene mutation (p.Val283Ala/p.Glu381del). Under standard culture conditions, VLCADD hiPSC-CMs showed high concentrations of long-chain acylcarnitines, short action potentials, and high delayed afterdepolarizations occurrence. Incubation of the hiPSC-CMs with 400 µM L-carnitine for 48 h led to increased long-chain acylcarnitine levels both in medium and cells. In addition, carnitine supplementation neither restored abnormal action potential parameters nor the increased occurrence of delayed afterdepolarizations in VLCADD hiPSC-CMs. We conclude that long-chain acylcarnitine accumulation and electrophysiological abnormalities in VLCADD hiPSC-CMs are not normalized by carnitine supplementation, indicating that this treatment is unlikely to be beneficial against cardiac arrhythmias in VLCADD patients.

2017 ◽  
Vol 312 (6) ◽  
pp. H1144-H1153 ◽  
Author(s):  
Sam Chai ◽  
Xiaoping Wan ◽  
Drew M. Nassal ◽  
Haiyan Liu ◽  
Christine S. Moravec ◽  
...  

Two-pore K+ (K2p) channels have been described in modulating background conductance as leak channels in different physiological systems. In the heart, the expression of K2p channels is heterogeneous with equivocation regarding their functional role. Our objective was to determine the K2p expression profile and their physiological and pathophysiological contribution to cardiac electrophysiology. Induced pluripotent stem cells (iPSCs) generated from humans were differentiated into cardiomyocytes (iPSC-CMs). mRNA was isolated from these cells, commercial iPSC-CM (iCells), control human heart ventricular tissue (cHVT), and ischemic (iHF) and nonischemic heart failure tissues (niHF). We detected 10 K2p channels in the heart. Comparing quantitative PCR expression of K2p channels between human heart tissue and iPSC-CMs revealed K2p1.1, K2p2.1, K2p5.1, and K2p17.1 to be higher expressed in cHVT, whereas K2p3.1 and K2p13.1 were higher in iPSC-CMs. Notably, K2p17.1 was significantly lower in niHF tissues compared with cHVT. Action potential recordings in iCells after K2p small interfering RNA knockdown revealed prolongations in action potential depolarization at 90% repolarization for K2p2.1, K2p3.1, K2p6.1, and K2p17.1. Here, we report the expression level of 10 human K2p channels in iPSC-CMs and how they compared with cHVT. Importantly, our functional electrophysiological data in human iPSC-CMs revealed a prominent role in cardiac ventricular repolarization for four of these channels. Finally, we also identified K2p17.1 as significantly reduced in niHF tissues and K2p4.1 as reduced in niHF compared with iHF. Thus, we advance the notion that K2p channels are emerging as novel players in cardiac ventricular electrophysiology that could also be remodeled in cardiac pathology and therefore contribute to arrhythmias. NEW & NOTEWORTHY Two-pore K+ (K2p) channels are traditionally regarded as merely background leak channels in myriad physiological systems. Here, we describe the expression profile of K2p channels in human-induced pluripotent stem cell-derived cardiomyocytes and outline a salient role in cardiac repolarization and pathology for multiple K2p channels.


2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Sou Nakamura ◽  
Naoshi Sugimoto ◽  
Koji Eto

AbstractPlatelet products are used in treatments for thrombocytopenia caused by hematopoietic diseases, chemotherapy, massive hemorrhages, extracorporeal circulation, and others. Their manufacturing depends on volunteers who donate blood. However, it is becoming increasingly necessary to reinforce this blood donation system with other blood sources due to the increase in demand and shortage of supply accompanying aging societies. In addition, blood-borne infections and alloimmune platelet transfusion refractoriness are not completely resolved. Since human induced pluripotent stem cell (iPSC)-platelet products can be supplied independently from the donor, it is expected to complement current platelet products. One big hurdle with iPSC-based systems is the production of 10 units, which is equivalent to 200 billion platelets. To overcome this issue, we established immortalized megakaryocyte cell lines (imMKCLs) by introducing three transgenes, c-MYC, BMI1, and BCL-XL, sequentially into hematopoietic and megakaryocytic progenitor stage cells derived from iPSCs. The three transgenes are regulated in a Tet-ON manner, enabling the addition and depletion of doxycycline to expand and maturate the imMKCLs, respectively. In addition, we succeeded in discovering drug combinations that enable feeder-free culture conditions in the imMKCL cultivation. Furthermore, we discovered the importance of turbulence in thrombopoiesis through live bone marrow imaging and developed a bioreactor based on the concept of turbulent flow. Eventually, through the identification of two key fluid physic parameters, turbulent energy and shear stress, we succeeded in scaling up the bioreactor to qualitatively and quantitatively achieve clinically applicable levels. Interestingly, three soluble factors released from imMKCLs in the turbulent flow condition, macrophage migration inhibitory factor (MIF), insulin growth factor binding protein 2 (IGFBP2), and nardilysin (NRDC), enhanced platelet production. Based on these developments, we initiated the first-in-human clinical trial of iPSC-derived platelets to a patient with alloimmune platelet transfusion refractoriness (allo-PTR) using an autologous product. In this review, we detail current research in this field and our study about the ex vivo production of iPSC-derived platelets.


2018 ◽  
Author(s):  
James J. Fink ◽  
Jeremy D. Schreiner ◽  
Judy E. Bloom ◽  
Dylan S. Baker ◽  
Tiwanna M. Robinson ◽  
...  

AbstractChromosome 15q11-q13 duplication syndrome (Dup15q) is a neurogenetic disorder caused by duplications of the maternal copy of this region. In addition to hypotonia, motor deficits, and language impairments, Dup15q patients commonly meet the criteria for autism spectrum disorder (ASD) and have a high prevalence of seizures. Here, we explored mechanisms of hyperexcitability in neurons derived from induced pluripotent stem cell (iPSC) lines from Dup15q patients. Maturation of resting membrane potential in Dup15q-derived neurons was similar to neurons from unaffected control subjects, but Dup15q neurons had delayed action potential maturation and increased synaptic event frequency and amplitude. Dup15q neurons also showed impairments in activity-dependent synaptic plasticity and homeostatic synaptic scaling. Finally, Dup15q neurons showed an increased frequency of spontaneous action potential firing compared to control neurons, in part due to disruption of KCNQ2 channels. Together these data point to multiple mechanisms underlying hyperexcitability that may provide new targets for the treatment of seizures and other phenotypes associated with Dup15q.


2021 ◽  
Vol 2 (4) ◽  
pp. 100859
Author(s):  
Joe Z. Zhang ◽  
Shane Rui Zhao ◽  
Chengyi Tu ◽  
Paul Pang ◽  
Mao Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document