scholarly journals Therapy for Pulmonary Arterial Hypertension: Glance on Nitric Oxide Pathway

2021 ◽  
Vol 12 ◽  
Author(s):  
Abraham Tettey ◽  
Yujie Jiang ◽  
Xiaohui Li ◽  
Ying Li

Pulmonary arterial hypertension (PAH) is a severe disease with a resultant increase of the mean pulmonary arterial pressure, right ventricular hypertrophy and eventual death. Research in recent years has produced various therapeutic options for its clinical management but the high mortality even under treatment remains a big challenge attributed to the complex pathophysiology. Studies from clinical and non-clinical experiments have revealed that the nitric oxide (NO) pathway is one of the key pathways underlying the pathophysiology of PAH. Many of the essential drugs used in the management of PAH act on this pathway highlighting its significant role in PAH. Meanwhile, several novel compounds targeting on NO pathway exhibits great potential to become future therapy medications. Furthermore, the NO pathway is found to interact with other crucial pathways. Understanding such interactions could be helpful in the discovery of new drug that provide better clinical outcomes.

2016 ◽  
Vol 48 (5) ◽  
pp. 1386-1395 ◽  
Author(s):  
Rui Zhang ◽  
Xiao-Jian Wang ◽  
Hong-Da Zhang ◽  
Xiao-Qing Sun ◽  
Qin-Hua Zhao ◽  
...  

Intact nitric oxide (NO) signalling is critical to maintaining appropriate pulmonary vascular tone. NO bioavailability is reduced in patients with pulmonary arterial hypertension. This study aimed to examine the impact of NO plasma metabolites (NOx) relative to haemodynamic dysfunction and mortality in patients with idiopathic pulmonary arterial hypertension (IPAH).A total of 104 consecutive adult IPAH patients who had undergone genetic counselling when first diagnosed were enrolled in this prospective study.The median concentration of NOx (μmol·L−1) was significantly lower in IPAH patients compared with healthy subjects, and was decreased further in 19 carriers of the bone morphogenetic protein-receptor type-2 (BMPR2) mutation compared to non-carriers. Reduced concentrations of NOx were correlated with mean pulmonary arterial pressure (mPAP), pulmonary vascular resistance (PVR) and cardiac output. Compared with higher baseline NOx concentrations, patients with a NOx concentration of ≤10 μmol·L−1 had a markedly worse survival. After adjustment for clinical features, a BMPR2 mutation and haemodynamics, a lower NOx level remained an increased risk of mortality.Patients with IPAH had lower levels of plasma NOx, which correlated inversely with mPAP, PVR and survival. Plasma NOx may be an important biomarker and prognostic indicator, suggesting that reduced NO synthesis contributes to the pathogenesis of IPAH.


2008 ◽  
Vol 68 (2) ◽  
pp. 191-195 ◽  
Author(s):  
H M A Hofstee ◽  
A Vonk Noordegraaf ◽  
A E Voskuyl ◽  
B A C Dijkmans ◽  
P E Postmus ◽  
...  

Objective:The aim of this study was to investigate whether there are differences in capillary nailfold changes in patients with systemic sclerosis (SSc) with and without pulmonary arterial hypertension (PAH), and whether these changes are associated with PAH severity and disease specificity.Methods:Capillary density and loop dimensions were studied in 21 healthy controls, 20 patients with idiopathic PAH (IPAH) and 40 patients with SSc. Of the 40 patients with SSc, 19 had no PAH (SSc–nonPAH) and 21 had PAH (SSc–PAH), of whom eight had PAH during exercise.Results:Capillary density was lower in SSc–PAH compared with patients who had SSc–nonPAH (4.33/mm vs 6.56/mm respectively, p = 0.001), but loop dimensions were equal. In comparison with IPAH, patients with SSc–PAH had reduced capillary density (4.33/mm vs 7.86/mm, p<0.001) and larger loop dimensions (total width 101.05 µm vs 44.43 µm, p<0.001). Capillary density in healthy controls (9.87/mm) was significantly higher when compared with SSc–nonPAH (6.56/mm), SSc–PAH (4.33/mm) and with IPAH (7.86/mm). No differences in capillary dimensions were present between healthy controls and IPAH.Capillary density correlated with mean pulmonary arterial pressure (PAP) at rest in SSc–PAH at rest (r = −0.58, p = 0.039) and IPAH (r = −0.67, p = 0.001).Conclusions:Reduction of nailfold capillary density, but not capillary loop dimensions is associated with PAH, and correlates with the severity of PAH in both SSc and IPAH. This suggests that either systemic microvascular changes play a part in the development of PAH, or that PAH itself contributes to systemic microvascular changes.


Sign in / Sign up

Export Citation Format

Share Document