scholarly journals Olbert’s Kappa Fermi and Bose Distributions

2021 ◽  
Vol 9 ◽  
Author(s):  
R. A. Treumann ◽  
Wolfgang Baumjohann

The quantum version of Olbert’s kappa distribution applicable to fermions is obtained. Its construction is straightforward but requires recognition of the differences in the nature of states separated by Fermi momenta. Its complement, the bosonic version of the kappa distribution is also given, as is the procedure of how to construct a hypothetical kappa-anyon distribution. At very low temperature the degenerate kappa Fermi distribution yields a kappa-modified version of the ordinary degenerate Fermi energy and momentum. We provide the Olbert-generalized expressions of the Olbert-Fermi partition function and entropy which may serve determining all relevant statistical mechanical quantities. Possible applications are envisaged to condensed matter physics, possibly quantum plasmas, and dense astrophysical objects like the interior state of terrestrial planets, neutron stars, magnetars where quantum effects come into play and dominate the microscopic scale but may have macroscopic consequences.

1964 ◽  
Vol 42 (8) ◽  
pp. 1564-1572 ◽  
Author(s):  
D. D. Betts

Statistical mechanical ensembles of interacting systems localized at the sites of a regular lattice and each having four possible states are considered. A set of lattice functions is introduced which permits a considerable simplification of the partition function for general nearest-neighbor interactions. The particular case of the Potts four-state ferromagnet model is solved exactly in two dimensions. The order–disorder problem for a certain quaternary alloy model is also solved exactly on a square net. The quaternary alloy model has the interesting property that it has two critical temperatures and exhibits two different types of long-range order. The partition function for the spin-3/2 Ising model on a square net is expressed in terms of graphs without odd vertices, but has not been solved exactly.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 321 ◽  
Author(s):  
Izabela Śliwa ◽  
A. V. Zakharov

The problem of predicting structural and dynamic behavior associated with thin smectic films, both deposited on a solid surface or stretched over an opening, when the temperature is slowly increased above the bulk transition temperature towards either the nematic or isotropic phases, remains an interesting one in the physics of condensed matter. A useful route in studies of structural and optical properties of thin smectic films is provided by a combination of statistical–mechanical theories, hydrodynamics of liquid crystal phases, and optical and calorimetric techniques. We believe that this review shows some useful routes not only for the further examining of the validity of a theoretical description of thin smectic films, both deposited on a solid surface or stretched over an opening, but also for analyzing their structural, optical, and dynamic properties.


1996 ◽  
Vol 10 (06) ◽  
pp. 683-699 ◽  
Author(s):  
P. NARAYANA SWAMY

Based on a recent study of the statistical mechanical properties of the q-modified boson oscillators, we develop the statistical mechanics of the q-modified boson gas, in particular the Grand Partition Function. We derive the various thermodynamic functions for the q-boson gas including the entropy, pressure and specific heat. We demonstrate that the gas exhibits a phase transition analogous to ordinary bose condensation. We derive the equation of state and develop the virial expansion for the equation of state. Several interesting properties of the q-boson gas are derived and compared with those of the ordinary boson which may point to the physical relevance of such systems.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Massimiliano Mattera

International audience We study annihilating random walks on $\mathbb{Z}$ using techniques of P.W. Kasteleyn and $R$. Kenyonon perfect matchings of planar graphs. We obtain the asymptotic of the density of remaining particles and the partition function of the underlying statistical mechanical model.


Author(s):  
Jean-Marie Stéphan

Standard statistical mechanical or condensed matter arguments tell us that bulk properties of a physical system do not depend too much on boundary conditions. Random tilings of large regions provide counterexamples to such intuition, as illustrated by the famous 'arctic circle theorem' for dimer coverings in two dimensions. In these notes, I discuss such examples in the context of critical phenomena, and their relation to 1+1d quantum particle models. All those turn out to share a common feature: they are inhomogeneous, in the sense that local densities now depend on position in the bulk. I explain how such problems may be understood using variational (or hydrodynamic) arguments, how to treat long range correlations, and how non trivial edge behavior can occur. While all this is done on the example of the dimer model, the results presented here have much greater generality. In that sense the dimer model serves as an opportunity to discuss broader methods and results. [These notes require only a basic knowledge of statistical mechanics.]


1974 ◽  
Vol 64 ◽  
pp. 94-94 ◽  
Author(s):  
A. A. Starobinsky

The effect of amplification of electromagnetic and gravitational waves reflected from a rotating black hole (‘superradiance scattering’) is investigated. This effect was proposed by Zel'dovich (1971). It leads, as well as the Penrose process, to the energy extraction from a Kerr black hole at the expense of its rotational energy and momentum decrease. The coefficient of wave reflection R>1 if ω<nω, where ω is the wave frequency, n - its angular momentum and ω is the black hole angular velocity. The value of this effect is not small in the case of gravitational waves, for example, if l=n = 2, ω →nω and a = M, then R≈2.38.There also exists a quantum version of the effect, namely, the one of spontaneous pair creation in the Kerr metric, but this quantum effect is exceedingly small in real astrophysical conditions, because its characteristic time is of the order G2M3/hc4, where M is the black hole mass.


1976 ◽  
Vol 54 (1) ◽  
pp. 160-165 ◽  
Author(s):  
Jan Bron

For gaseous UF6 changes in the thermodynamic quantifies ΔG (= ΔA), ΔH (= ΔU), ΔCp (= ΔCv), and ΔS upon isotopic substitution can be determined by using the spectroscopically determined geometry and force field. The differences ΔG etc. are defined as (G238 – Gx), where 238 and x (x = 235, 234, 233, and 232) are the masses of the central uranium atom. The changes in the thermodynamic quantities are related to the logarithm of the partition function ratio of the UF6 species compared. The logarithm of the partition function ratio can be conveniently expressed as a series in temperature and hence, by using statistical mechanical relationships, the changes in thermodynamic quantities can be expressed as a series in temperature.Since these changes form examples of heavy isotope effects the validity and utility of the first quantum correction can be investigated. Uncertainties and trends in the magnitudes of the differences in the thermodynamic quantities due to uncertainties or changes in spectroscopic parameters are discussed by means of the first quantum correction. It has been found that the first quantum correction has little quantitative value in the lower temperature region, but it can be used in that range to explain some observed trends in the isotope effects. Some of the conclusions can also be applied to kinetic and equilibrium heavy isotope effects.


Sign in / Sign up

Export Citation Format

Share Document