scholarly journals Recognition of Multiscale Dense Gel Filament-Droplet Field in Digital Holography With Mo-U-Net

2021 ◽  
Vol 9 ◽  
Author(s):  
Zhentao Pang ◽  
Hang Zhang ◽  
Yu Wang ◽  
Letian Zhang ◽  
Yingchun Wu ◽  
...  

Accurate particle detection is a common challenge in particle field characterization with digital holography, especially for gel secondary breakup with dense complex particles and filaments of multi-scale and strong background noises. This study proposes a deep learning method called Mo-U-net which is adapted from the combination of U-net and Mobilenetv2, and demostrates its application to segment the dense filament-droplet field of gel drop. Specially, a pruning method is applied on the Mo-U-net, which cuts off about two-thirds of its deep layers to save its training time while remaining a high segmentation accuracy. The performances of the segmentation are quantitatively evaluated by three indices, the positive intersection over union (PIOU), the average square symmetric boundary distance (ASBD) and the diameter-based prediction statistics (DBPS). The experimental results show that the area prediction accuracy (PIOU) of Mo-U-net reaches 83.3%, which is about 5% higher than that of adaptive-threshold method (ATM). The boundary prediction error (ASBD) of Mo-U-net is only about one pixel-wise length, which is one third of that of ATM. And Mo-U-net also shares a coherent size distribution (DBPS) prediction of droplet diameters with the reality. These results demonstrate the high accuracy of Mo-U-net in dense filament-droplet field recognition and its capability of providing accurate statistical data in a variety of holographic particle diagnostics. Public model address: https://github.com/Wu-Tong-Hearted/Recognition-of-multiscale-dense-gel-filament-droplet-field-in-digital-holography-with-Mo-U-net.

Author(s):  
Xuewu Zhang ◽  
Yansheng Gong ◽  
Chen Qiao ◽  
Wenfeng Jing

AbstractThis article mainly focuses on the most common types of high-speed railways malfunctions in overhead contact systems, namely, unstressed droppers, foreign-body invasions, and pole number-plate malfunctions, to establish a deep-network detection model. By fusing the feature maps of the shallow and deep layers in the pretraining network, global and local features of the malfunction area are combined to enhance the network's ability of identifying small objects. Further, in order to share the fully connected layers of the pretraining network and reduce the complexity of the model, Tucker tensor decomposition is used to extract features from the fused-feature map. The operation greatly reduces training time. Through the detection of images collected on the Lanxin railway line, experiments result show that the proposed multiview Faster R-CNN based on tensor decomposition had lower miss probability and higher detection accuracy for the three types faults. Compared with object-detection methods YOLOv3, SSD, and the original Faster R-CNN, the average miss probability of the improved Faster R-CNN model in this paper is decreased by 37.83%, 51.27%, and 43.79%, respectively, and average detection accuracy is increased by 3.6%, 9.75%, and 5.9%, respectively.


2021 ◽  
Vol 15 ◽  
Author(s):  
Fan Wu ◽  
Anmin Gong ◽  
Hongyun Li ◽  
Lei Zhao ◽  
Wei Zhang ◽  
...  

Objective: Tangent Space Mapping (TSM) using the geometric structure of the covariance matrices is an effective method to recognize multiclass motor imagery (MI). Compared with the traditional CSP method, the Riemann geometric method based on TSM takes into account the nonlinear information contained in the covariance matrix, and can extract more abundant and effective features. Moreover, the method is an unsupervised operation, which can reduce the time of feature extraction. However, EEG features induced by MI mental activities of different subjects are not the same, so selection of subject-specific discriminative EEG frequency components play a vital role in the recognition of multiclass MI. In order to solve the problem, a discriminative and multi-scale filter bank tangent space mapping (DMFBTSM) algorithm is proposed in this article to design the subject-specific Filter Bank (FB) so as to effectively recognize multiclass MI tasks.Methods: On the 4-class BCI competition IV-2a dataset, first, a non-parametric method of multivariate analysis of variance (MANOVA) based on the sum of squared distances is used to select discriminative frequency bands for a subject; next, a multi-scale FB is generated according to the range of these frequency bands, and then decompose multi-channel EEG of the subject into multiple sub-bands combined with several time windows. Then TSM algorithm is used to estimate Riemannian tangent space features in each sub-band and finally a liner Support Vector Machines (SVM) is used for classification.Main Results: The analysis results show that the proposed discriminative FB enhances the multi-scale TSM algorithm, improves the classification accuracy and reduces the execution time during training and testing. On the 4-class BCI competition IV-2a dataset, the average session to session classification accuracy of nine subjects reached 77.33 ± 12.3%. When the training time and the test time are similar, the average classification accuracy is 2.56% higher than the latest TSM method based on multi-scale filter bank analysis technology. When the classification accuracy is similar, the training speed is increased by more than three times, and the test speed is increased two times more. Compared with Supervised Fisher Geodesic Minimum Distance to the Mean (Supervised FGMDRM), another new variant based on Riemann geometry classifier, the average accuracy is 3.36% higher, we also compared with the latest Deep Learning method, and the average accuracy of 10-fold cross validation improved by 2.58%.Conclusion: Research shows that the proposed DMFBTSM algorithm can improve the classification accuracy of MI tasks.Significance: Compared with the MFBTSM algorithm, the algorithm proposed in this article is expected to select frequency bands with good separability for specific subject to improve the classification accuracy of multiclass MI tasks and reduce the feature dimension to reduce training time and testing time.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3035
Author(s):  
Feiyue Deng ◽  
Yan Bi ◽  
Yongqiang Liu ◽  
Shaopu Yang

Remaining useful life (RUL) prediction of key components is an important influencing factor in making accurate maintenance decisions for mechanical systems. With the rapid development of deep learning (DL) techniques, the research on RUL prediction based on the data-driven model is increasingly widespread. Compared with the conventional convolution neural networks (CNNs), the multi-scale CNNs can extract different-scale feature information, which exhibits a better performance in the RUL prediction. However, the existing multi-scale CNNs employ multiple convolution kernels with different sizes to construct the network framework. There are two main shortcomings of this approach: (1) the convolution operation based on multiple size convolution kernels requires enormous computation and has a low operational efficiency, which severely restricts its application in practical engineering. (2) The convolutional layer with a large size convolution kernel needs a mass of weight parameters, leading to a dramatic increase in the network training time and making it prone to overfitting in the case of small datasets. To address the above issues, a multi-scale dilated convolution network (MsDCN) is proposed for RUL prediction in this article. The MsDCN adopts a new multi-scale dilation convolution fusion unit (MsDCFU), in which the multi-scale network framework is composed of convolution operations with different dilated factors. This effectively expands the range of receptive field (RF) for the convolution kernel without an additional computational burden. Moreover, the MsDCFU employs the depthwise separable convolution (DSC) to further improve the operational efficiency of the prognostics model. Finally, the proposed method was validated with the accelerated degradation test data of rolling element bearings (REBs). The experimental results demonstrate that the proposed MSDCN has a higher RUL prediction accuracy compared to some typical CNNs and better operational efficiency than the existing multi-scale CNNs based on different convolution kernel sizes.


2021 ◽  
Vol 15 ◽  
Author(s):  
Qingquan Meng ◽  
Lianyu Wang ◽  
Tingting Wang ◽  
Meng Wang ◽  
Weifang Zhu ◽  
...  

Choroid neovascularization (CNV) is one of the blinding ophthalmologic diseases. It is mainly caused by new blood vessels growing in choroid and penetrating Bruch's membrane. Accurate segmentation of CNV is essential for ophthalmologists to analyze the condition of the patient and specify treatment plan. Although many deep learning-based methods have achieved promising results in many medical image segmentation tasks, CNV segmentation in retinal optical coherence tomography (OCT) images is still very challenging as the blur boundary of CNV, large morphological differences, speckle noise, and other similar diseases interference. In addition, the lack of pixel-level annotation data is also one of the factors that affect the further improvement of CNV segmentation accuracy. To improve the accuracy of CNV segmentation, a novel multi-scale information fusion network (MF-Net) based on U-Shape architecture is proposed for CNV segmentation in retinal OCT images. A novel multi-scale adaptive-aware deformation module (MAD) is designed and inserted into the top of the encoder path, aiming at guiding the model to focus on multi-scale deformation of the targets, and aggregates the contextual information. Meanwhile, to improve the ability of the network to learn to supplement low-level local high-resolution semantic information to high-level feature maps, a novel semantics-details aggregation module (SDA) between encoder and decoder is proposed. In addition, to leverage unlabeled data to further improve the CNV segmentation, a semi-supervised version of MF-Net is designed based on pseudo-label data augmentation strategy, which can leverage unlabeled data to further improve CNV segmentation accuracy. Finally, comprehensive experiments are conducted to validate the performance of the proposed MF-Net and SemiMF-Net. The experiment results show that both proposed MF-Net and SemiMF-Net outperforms other state-of-the-art algorithms.


2021 ◽  
Vol 72 (6) ◽  
pp. 374-380
Author(s):  
Bhavinkumar Gajjar ◽  
Hiren Mewada ◽  
Ashwin Patani

Abstract Support vector machine (SVM) techniques and deep learning have been prevalent in object classification for many years. However, deep learning is computation-intensive and can require a long training time. SVM is significantly faster than Convolution Neural Network (CNN). However, the SVM has limited its applications in the mid-size dataset as it requires proper tuning. Recently the parameterization of multiple kernels has shown greater flexibility in the characterization of the dataset. Therefore, this paper proposes a sparse coded multi-scale approach to reduce training complexity and tuning of SVM using a non-linear fusion of kernels for large class natural scene classification. The optimum features are obtained by parameterizing the dictionary, Scale Invariant Feature Transform (SIFT) parameters, and fusion of multiple kernels. Experiments were conducted on a large dataset to examine the multi-kernel space capability to find distinct features for better classification. The proposed approach founds to be promising than the linear multi-kernel SVM approaches achieving 91.12 % maximum accuracy.


2020 ◽  
Vol 29 (15) ◽  
pp. 2050251
Author(s):  
Ning Li ◽  
Xin Lv ◽  
Shoukun Xu ◽  
Bo Li ◽  
Yuwan Gu

The one-dimensional Otsu method is an adaptive threshold method. It obtains the optimal threshold for image segmentation by the maximum between-class variance, without considering the minimum within-class variance. As the background of water surface image is mostly uniform, using this feature, the threshold selection tactics adopt the combination of the one-dimensional Otsu method and the uniformity measurement, proposes the threshold segmentation method based on uniformity measurement, and adopts the performance evaluation method based on GT image to compare the segmentation result. Experimental results demonstrate that effectiveness of the improved Otsu method is generally better than the traditional Otsu method, and the other four commonly used threshold segmentation methods for the water surface image, which improves the segmentation accuracy of such images and reduces the segmentation error rate. At the same time, as the water surface image is usually affected by light intensity, water ripple and other factors, this paper also adopts the relevant correction algorithm to further improve the segmentation accuracy.


2017 ◽  
Author(s):  
Andrew J. Plassard ◽  
Maureen McHugo ◽  
Stephan Heckers ◽  
Bennett A. Landman

2021 ◽  
Author(s):  
Yu Hao ◽  
Biao Zhang ◽  
Xiaohua Wan ◽  
Rui Yan ◽  
Zhiyong Liu ◽  
...  

Motivation: Cryo-electron tomography (Cryo-ET) with sub-tomogram averaging (STA) is indispensable when studying macromolecule structures and functions in their native environments. However, current tomographic reconstructions suffer the low signal-to-noise (SNR) ratio and the missing wedge artifacts. Hence, automatic and accurate macromolecule localization and classification become the bottleneck problem for structural determination by STA. Here, we propose a 3D multi-scale dense convolutional neural network (MSDNet) for voxel-wise annotations of tomograms. Weighted focal loss is adopted as a loss function to solve the class imbalance. The proposed network combines 3D hybrid dilated convolutions (HDC) and dense connectivity to ensure an accurate performance with relatively few trainable parameters. 3D HDC expands the receptive field without losing resolution or learning extra parameters. Dense connectivity facilitates the re-use of feature maps to generate fewer intermediate feature maps and trainable parameters. Then, we design a 3D MSDNet based approach for fully automatic macromolecule localization and classification, called VP-Detector (Voxel-wise Particle Detector). VP-Detector is efficient because classification performs on the pre-calculated coordinates instead of a sliding window. Results: We evaluated the VP-Detector on simulated tomograms. Compared to the state-of-the-art methods, our method achieved a competitive performance on localization with the highest F1-score. We also demonstrated that the weighted focal loss improves the classification of hard classes. We trained the network on a part of training sets to prove the availability of training on relatively small datasets. Moreover, the experiment shows that VP-Detector has a fast particle detection speed, which costs less than 14 minutes on a test tomogram.


Sign in / Sign up

Export Citation Format

Share Document