scholarly journals VP-Detector: A 3D convolutional neural network for automated macromolecule localization and classification in cryo-electron tomograms

2021 ◽  
Author(s):  
Yu Hao ◽  
Biao Zhang ◽  
Xiaohua Wan ◽  
Rui Yan ◽  
Zhiyong Liu ◽  
...  

Motivation: Cryo-electron tomography (Cryo-ET) with sub-tomogram averaging (STA) is indispensable when studying macromolecule structures and functions in their native environments. However, current tomographic reconstructions suffer the low signal-to-noise (SNR) ratio and the missing wedge artifacts. Hence, automatic and accurate macromolecule localization and classification become the bottleneck problem for structural determination by STA. Here, we propose a 3D multi-scale dense convolutional neural network (MSDNet) for voxel-wise annotations of tomograms. Weighted focal loss is adopted as a loss function to solve the class imbalance. The proposed network combines 3D hybrid dilated convolutions (HDC) and dense connectivity to ensure an accurate performance with relatively few trainable parameters. 3D HDC expands the receptive field without losing resolution or learning extra parameters. Dense connectivity facilitates the re-use of feature maps to generate fewer intermediate feature maps and trainable parameters. Then, we design a 3D MSDNet based approach for fully automatic macromolecule localization and classification, called VP-Detector (Voxel-wise Particle Detector). VP-Detector is efficient because classification performs on the pre-calculated coordinates instead of a sliding window. Results: We evaluated the VP-Detector on simulated tomograms. Compared to the state-of-the-art methods, our method achieved a competitive performance on localization with the highest F1-score. We also demonstrated that the weighted focal loss improves the classification of hard classes. We trained the network on a part of training sets to prove the availability of training on relatively small datasets. Moreover, the experiment shows that VP-Detector has a fast particle detection speed, which costs less than 14 minutes on a test tomogram.

2020 ◽  
Vol 10 (11) ◽  
pp. 3956 ◽  
Author(s):  
Fan Li ◽  
Hong Tang ◽  
Shang Shang ◽  
Klaus Mathiak ◽  
Fengyu Cong

Heart sounds play an important role in the diagnosis of cardiac conditions. Due to the low signal-to-noise ratio (SNR), it is problematic and time-consuming for experts to discriminate different kinds of heart sounds. Thus, objective classification of heart sounds is essential. In this study, we combined a conventional feature engineering method with deep learning algorithms to automatically classify normal and abnormal heart sounds. First, 497 features were extracted from eight domains. Then, we fed these features into the designed convolutional neural network (CNN), in which the fully connected layers that are usually used before the classification layer were replaced with a global average pooling layer to obtain global information about the feature maps and avoid overfitting. Considering the class imbalance, the class weights were set in the loss function during the training process to improve the classification algorithm’s performance. Stratified five-fold cross-validation was used to evaluate the performance of the proposed method. The mean accuracy, sensitivity, specificity and Matthews correlation coefficient observed on the PhysioNet/CinC Challenge 2016 dataset were 86.8%, 87%, 86.6% and 72.1% respectively. The proposed algorithm’s performance achieves an appropriate trade-off between sensitivity and specificity.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3347 ◽  
Author(s):  
Zhishuang Yang ◽  
Bo Tan ◽  
Huikun Pei ◽  
Wanshou Jiang

The classification of point clouds is a basic task in airborne laser scanning (ALS) point cloud processing. It is quite a challenge when facing complex observed scenes and irregular point distributions. In order to reduce the computational burden of the point-based classification method and improve the classification accuracy, we present a segmentation and multi-scale convolutional neural network-based classification method. Firstly, a three-step region-growing segmentation method was proposed to reduce both under-segmentation and over-segmentation. Then, a feature image generation method was used to transform the 3D neighborhood features of a point into a 2D image. Finally, feature images were treated as the input of a multi-scale convolutional neural network for training and testing tasks. In order to obtain performance comparisons with existing approaches, we evaluated our framework using the International Society for Photogrammetry and Remote Sensing Working Groups II/4 (ISPRS WG II/4) 3D labeling benchmark tests. The experiment result, which achieved 84.9% overall accuracy and 69.2% of average F1 scores, has a satisfactory performance over all participating approaches analyzed.


2021 ◽  
Vol 13 (23) ◽  
pp. 4743
Author(s):  
Wei Yuan ◽  
Wenbo Xu

The segmentation of remote sensing images by deep learning technology is the main method for remote sensing image interpretation. However, the segmentation model based on a convolutional neural network cannot capture the global features very well. A transformer, whose self-attention mechanism can supply each pixel with a global feature, makes up for the deficiency of the convolutional neural network. Therefore, a multi-scale adaptive segmentation network model (MSST-Net) based on a Swin Transformer is proposed in this paper. Firstly, a Swin Transformer is used as the backbone to encode the input image. Then, the feature maps of different levels are decoded separately. Thirdly, the convolution is used for fusion, so that the network can automatically learn the weight of the decoding results of each level. Finally, we adjust the channels to obtain the final prediction map by using the convolution with a kernel of 1 × 1. By comparing this with other segmentation network models on a WHU building data set, the evaluation metrics, mIoU, F1-score and accuracy are all improved. The network model proposed in this paper is a multi-scale adaptive network model that pays more attention to the global features for remote sensing segmentation.


2020 ◽  
Vol 10 (3) ◽  
pp. 809 ◽  
Author(s):  
Yunfan Chen ◽  
Hyunchul Shin

Pedestrian-related accidents are much more likely to occur during nighttime when visible (VI) cameras are much less effective. Unlike VI cameras, infrared (IR) cameras can work in total darkness. However, IR images have several drawbacks, such as low-resolution, noise, and thermal energy characteristics that can differ depending on the weather. To overcome these drawbacks, we propose an IR camera system to identify pedestrians at night that uses a novel attention-guided encoder-decoder convolutional neural network (AED-CNN). In AED-CNN, encoder-decoder modules are introduced to generate multi-scale features, in which new skip connection blocks are incorporated into the decoder to combine the feature maps from the encoder and decoder module. This new architecture increases context information which is helpful for extracting discriminative features from low-resolution and noisy IR images. Furthermore, we propose an attention module to re-weight the multi-scale features generated by the encoder-decoder module. The attention mechanism effectively highlights pedestrians while eliminating background interference, which helps to detect pedestrians under various weather conditions. Empirical experiments on two challenging datasets fully demonstrate that our method shows superior performance. Our approach significantly improves the precision of the state-of-the-art method by 5.1% and 23.78% on the Keimyung University (KMU) and Computer Vision Center (CVC)-09 pedestrian dataset, respectively.


Author(s):  
K. Chen ◽  
M. Weinmann ◽  
X. Sun ◽  
M. Yan ◽  
S. Hinz ◽  
...  

<p><strong>Abstract.</strong> In this paper, we address the semantic segmentation of aerial imagery based on the use of multi-modal data given in the form of true orthophotos and the corresponding Digital Surface Models (DSMs). We present the Deeply-supervised Shuffling Convolutional Neural Network (DSCNN) representing a multi-scale extension of the Shuffling Convolutional Neural Network (SCNN) with deep supervision. Thereby, we take the advantage of the SCNN involving the shuffling operator to effectively upsample feature maps and then fuse multiscale features derived from the intermediate layers of the SCNN, which results in the Multi-scale Shuffling Convolutional Neural Network (MSCNN). Based on the MSCNN, we derive the DSCNN by introducing additional losses into the intermediate layers of the MSCNN. In addition, we investigate the impact of using different sets of hand-crafted radiometric and geometric features derived from the true orthophotos and the DSMs on the semantic segmentation task. For performance evaluation, we use a commonly used benchmark dataset. The achieved results reveal that both multi-scale fusion and deep supervision contribute to an improvement in performance. Furthermore, the use of a diversity of hand-crafted radiometric and geometric features as input for the DSCNN does not provide the best numerical results, but smoother and improved detections for several objects.</p>


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Tulika Kakati ◽  
Dhruba K. Bhattacharyya ◽  
Jugal K. Kalita ◽  
Trina M. Norden-Krichmar

Abstract Background A limitation of traditional differential expression analysis on small datasets involves the possibility of false positives and false negatives due to sample variation. Considering the recent advances in deep learning (DL) based models, we wanted to expand the state-of-the-art in disease biomarker prediction from RNA-seq data using DL. However, application of DL to RNA-seq data is challenging due to absence of appropriate labels and smaller sample size as compared to number of genes. Deep learning coupled with transfer learning can improve prediction performance on novel data by incorporating patterns learned from other related data. With the emergence of new disease datasets, biomarker prediction would be facilitated by having a generalized model that can transfer the knowledge of trained feature maps to the new dataset. To the best of our knowledge, there is no Convolutional Neural Network (CNN)-based model coupled with transfer learning to predict the significant upregulating (UR) and downregulating (DR) genes from both trained and untrained datasets. Results We implemented a CNN model, DEGnext, to predict UR and DR genes from gene expression data obtained from The Cancer Genome Atlas database. DEGnext uses biologically validated data along with logarithmic fold change values to classify differentially expressed genes (DEGs) as UR and DR genes. We applied transfer learning to our model to leverage the knowledge of trained feature maps to untrained cancer datasets. DEGnext’s results were competitive (ROC scores between 88 and 99$$\%$$ % ) with those of five traditional machine learning methods: Decision Tree, K-Nearest Neighbors, Random Forest, Support Vector Machine, and XGBoost. DEGnext was robust and effective in terms of transferring learned feature maps to facilitate classification of unseen datasets. Additionally, we validated that the predicted DEGs from DEGnext were mapped to significant Gene Ontology terms and pathways related to cancer. Conclusions DEGnext can classify DEGs into UR and DR genes from RNA-seq cancer datasets with high performance. This type of analysis, using biologically relevant fine-tuning data, may aid in the exploration of potential biomarkers and can be adapted for other disease datasets.


Geophysics ◽  
2021 ◽  
pp. 1-99
Author(s):  
Kai Gao ◽  
Lianjie Huang ◽  
Yingcai Zheng ◽  
Rongrong Lin ◽  
Hao Hu ◽  
...  

High-fidelity fault detection on seismic images is one of the most important and challenging topics in the field of automatic seismic interpretation. Conventional hand-picking-based and semi-human-intervened fault detection approaches are being replaced by fully automatic methods thanks to the development of machine learning. We develop a novel multiscale attention convolutional neural network (MACNN for short) to improve machine-learning-based automatic end-to-end fault detection on seismic images. The most important characteristics of our MACNN fault detection method is that it employs a multiscale spatial-channel attention mechanism to merge and refine encoder feature maps of different spatial resolutions. The new architecture enables our MACNN to more effectively learn and exploit contextual information embedded in the encoder feature maps. We demonstrate through several synthetic data and field data examples that our MACNN tends to produce higher-resolution, higher-fidelity fault maps from complex seismic images compared with the conventional fault-detection convolutional neural network, thus leading to improved geological fidelity and interpretability of detected faults.


2021 ◽  
Vol 18 (5) ◽  
pp. 6978-3994
Author(s):  
Zijian Wang ◽  
◽  
Yaqin Zhu ◽  
Haibo Shi ◽  
Yanting Zhang ◽  
...  

<abstract> <p>Computer Assisted Diagnosis (CAD) based on brain Magnetic Resonance Imaging (MRI) is a popular research field for the computer science and medical engineering. Traditional machine learning and deep learning methods were employed in the classification of brain MRI images in the previous studies. However, the current algorithms rarely take into consideration the influence of multi-scale brain connectivity disorders on some mental diseases. To improve this defect, a deep learning structure was proposed based on MRI images, which was designed to consider the brain's connections at different sizes and the attention of connections. In this work, a Multiscale View (MV) module was proposed, which was designed to detect multi-scale brain network disorders. On the basis of the MV module, the path attention module was also proposed to simulate the attention selection of the parallel paths in the MV module. Based on the two modules, we proposed a 3D Multiscale View Convolutional Neural Network with Attention (3D MVA-CNN) for classification of MRI images for mental disease. The proposed method outperformed the previous 3D CNN structures in the structural MRI data of ADHD-200 and the functional MRI data of schizophrenia. Finally, we also proposed a preliminary framework for clinical application using 3D CNN, and discussed its limitations on data accessing and reliability. This work promoted the assisted diagnosis of mental diseases based on deep learning and provided a novel 3D CNN method based on MRI data.</p> </abstract>


Sign in / Sign up

Export Citation Format

Share Document