scholarly journals Investigation Into Magnetic Reconnection Formation on Propellant Ignition in Electrical Explosion

2021 ◽  
Vol 9 ◽  
Author(s):  
Jiangbo Zhang ◽  
Wei Liu ◽  
Fei Xiao ◽  
Taixin Liang ◽  
Shusen Zhao

In magnetic reconnection, magnetic lines break and reconnect to change their topology to a lower-energy state. This process can liberate stored magnetic field energy and accelerate particles during unsteady explosive events. Here, we report the observations of the magnetic reconnection and kink instability of plasma jet in single wire electrical explosion and their effect on propellant ignition. The results showed that the initial velocity of plasma was ∼2,000 m/s, and when the magnetic reconnection occurred, the velocity increased by ∼400–∼2,400 m/s. The evaluated Alfvén velocity was ∼500 m/s, the Alfvén time was ∼20 µs, and the Lundquist number S = 1.7 × 107. Based on these experimental results and model, the three-dimensional magnetic field topology and its evolution process was evaluated and presented. Furthermore, the magnetic reconnection occurred when its curvature reached a certain value due to the fact that the motion of the current sheet changes the topology of the magnetic field, and then, the plasma jet was accelerated and exhausted. The plasma jet angle was ∼50° in experiment 1, and it was consistent with the calculated results. The resulting magnetic reconnection plays an important role in propellant ignition, which enhances the ignition ability of wire electrical explosion. Furthermore, the results represent a key step towards resolving one of the most important problems of plasma physics and can be used to improve the understanding of wire array explosion and propellant ignition.

2021 ◽  
Vol 9 ◽  
Author(s):  
Yan-Jun Gu ◽  
Sergei V. Bulanov

Abstract Magnetic reconnection driven by laser plasma interactions attracts great interests in the recent decades. Motivated by the rapid development of the laser technology, the ultra strong magnetic field generated by the laser-plasma accelerated electrons provides unique environment to investigate the relativistic magnetic field annihilation and reconnection. It opens a new way for understanding relativistic regimes of fast magnetic field dissipation particularly in space plasmas, where the large scale magnetic field energy is converted to the energy of the nonthermal charged particles. Here we review the recent results in relativistic magnetic reconnection based on the laser and collisionless plasma interactions. The basic mechanism and the theoretical model are discussed. Several proposed experimental setups for relativistic reconnection research are presented.


2021 ◽  
Author(s):  
Chen Shi ◽  
Anton Artemyev ◽  
Marco Velli ◽  
Anna Tenerani

<p>Magnetic reconnection converts the magnetic field energy into thermal and kinetic energies of the plasma. This process usually happens at extremely fast speed and is therefore believed to be a fundamental mechanism to explain various explosive phenomena such as coronal mass ejections and planetary magnetospheric storms. How magnetic reconnection is triggered from the large magnetohydrodynamic (MHD) scales remains an open question, with some theoretical and numerical studies showing the tearing instability to be involved. Observations in the Earth’s magnetotail and near the magnetopause show that a finite normal magnetic field is usually present inside the reconnecting current sheet. Besides, such a normal field may also exist in the solar corona. However, how this normal magnetic field modifies the tearing instability is not thoroughly studied. Here we discuss the linear tearing instability inside a two-dimensional current sheet with a normal component of magnetic field where the magnetic tension force is balanced by ion flows parallel and anti-parallel to the magnetic field. We solve the dispersion relation of the tearing mode with wave vector parallel to the reconnecting magnetic field. Our results confirm that the finite normal magnetic field stabilizes the tearing mode and makes the mode oscillatory instead of purely growing.</p>


2021 ◽  
Author(s):  
Yann Pfau-Kempf ◽  
Minna Palmroth ◽  
Andreas Johlander ◽  
Lucile Turc ◽  
Markku Alho ◽  
...  

<p>Dayside magnetic reconnection at the magnetopause, which is a major driver of space weather, is studied for the first time in a three-dimensional (3D) realistic setup using the Vlasiator hybrid-Vlasov kinetic model. A noon–midnight meridional plane simulation is extended in the dawn–dusk direction to cover 7 Earth radii. The southward interplanetary magnetic field causes magnetic reconnection to occur at the subsolar magnetopause. Perturbations arising from kinetic instabilities in the magnetosheath appear to modulate the reconnection. Its characteristics are consistent with multiple, bursty, and patchy magnetopause reconnection. It is shown that the kinetic behavior of the plasma, as simulated by the model, has consequences on the applicability of methods such as the four-field junction to identify and analyse magnetic reconnection in 3D kinetic simulations.</p>


2002 ◽  
Vol 29 (10) ◽  
pp. 86-1-86-4 ◽  
Author(s):  
B. Hnat ◽  
S. C. Chapman ◽  
G. Rowlands ◽  
N. W. Watkins ◽  
W. M. Farrell

Author(s):  
Wei He ◽  
Jitao Zhang ◽  
Yueran Lu ◽  
Aichao Yang ◽  
Chiwen Qu ◽  
...  

1990 ◽  
Vol 140 ◽  
pp. 159-162
Author(s):  
V.G. Berman ◽  
L.S. Marochnik ◽  
Yu.N. Mishurov ◽  
A.A. Suchkov

We show that large–scale motions of the interstellar gas, such as those associated with galactic density waves, easily develop, over a wide range of scales, shocks and discontinuities which are expected to generate turbulence. The latter is supposed to evoke diffusion of magnetic fields and cosmic rays on scales down to a few parsecs. We suggest that these processes may be of major importance in discussions of interconnections between the observed radio emission of the disks of spiral galaxies and the gas density distribution within them. In particular, we predict that the density of cosmic rays and magnetic field energy must be much less contrasted (on scales of ~1 pc and up to the scales of galactic shocks) than the gas density, hence the synchrotron radio emission is not as contrasted as is predicted under the hypothesis of a fully frozen-in magnetic field.


2006 ◽  
Vol 34 (1-2) ◽  
pp. 425-428 ◽  
Author(s):  
S.K. Lyo ◽  
E. Bielejec ◽  
J.A. Seamons ◽  
J.L. Reno ◽  
M.P. Lilly ◽  
...  

2009 ◽  
Vol 5 (H15) ◽  
pp. 434-435
Author(s):  
A. Lazarian ◽  
G. Kowal ◽  
E. Vishniac ◽  
K. Kulpa-Dubel ◽  
K. Otmianowska-Mazur

AbstractA magnetic field embedded in a perfectly conducting fluid preserves its topology for all times. Although ionized astrophysical objects, like stars and galactic disks, are almost perfectly conducting, they show indications of changes in topology, magnetic reconnection, on dynamical time scales. Reconnection can be observed directly in the solar corona, but can also be inferred from the existence of large scale dynamo activity inside stellar interiors. Solar flares and gamma ray busts are usually associated with magnetic reconnection. Previous work has concentrated on showing how reconnection can be rapid in plasmas with very small collision rates. Here we present numerical evidence, based on three dimensional simulations, that reconnection in a turbulent fluid occurs at a speed comparable to the rms velocity of the turbulence, regardless of the value of the resistivity. In particular, this is true for turbulent pressures much weaker than the magnetic field pressure so that the magnetic field lines are only slightly bent by the turbulence. These results are consistent with the proposal by Lazarian & Vishniac (1999) that reconnection is controlled by the stochastic diffusion of magnetic field lines, which produces a broad outflow of plasma from the reconnection zone. This work implies that reconnection in a turbulent fluid typically takes place in approximately a single eddy turnover time, with broad implications for dynamo activity and particle acceleration throughout the universe. In contrast, the reconnection in 2D configurations in the presence of turbulence depends on resistivity, i.e. is slow.


Sign in / Sign up

Export Citation Format

Share Document